PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (29)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
1.  GPC3 reduces cell proliferation in renal carcinoma cell lines 
BMC Cancer  2014;14(1):631.
Background
Glypican 3 (GPC3) is a member of the family of glypican heparan sulfate proteoglycans (HSPGs). The GPC3 gene may play a role in controlling cell migration, negatively regulating cell growth and inducing apoptosis. GPC3 is downregulated in several cancers, which can result in uncontrolled cell growth and can also contribute to the malignant phenotype of some tumors. The purpose of this study was to analyze the mechanism of action of the GPC3 gene in clear cell renal cell carcinoma.
Methods
Five clear cell renal cell carcinoma cell lines and carcinoma samples were used to analyze GPC3 mRNA expression (qRT-PCR). Then, representative cell lines, one primary renal carcinoma (786-O) and one metastatic renal carcinoma (ACHN), were chosen to carry out functional studies. We constructed a GPC3 expression vector and transfected the renal carcinoma cell lines, 786-O and ACHN. GPC3 overexpression was analyzed using qRT-PCR and immunocytochemistry. We evaluated cell proliferation using MTT and colony formation assays. Flow cytometry was used to evaluate apoptosis and perform cell cycle analyses.
Results
We observed that GPC3 is downregulated in clear cell renal cell carcinoma samples and cell lines compared with normal renal samples. GPC3 mRNA expression and protein levels in 786-O and ACHN cell lines increased after transfection with the GPC3 expression construct, and the cell proliferation rate decreased in both cell lines following overexpression of GPC3. Further, apoptosis was not induced in the renal cell carcinoma cell lines overexpressing GPC3, and there was an increase in the cell population during the G1 phase in the cell cycle.
Conclusion
We suggest that the GPC3 gene reduces the rate of cell proliferation through cell cycle arrest during the G1 phase in renal cell carcinoma.
doi:10.1186/1471-2407-14-631
PMCID: PMC4161903  PMID: 25168166
GPC3; Cell lines; Cell proliferation; Renal carcinoma; Transfection
2.  Lessons learned while implementing an HIV/AIDS care and treatment program in rural Mozambique 
Mozambique has severe resource constraints, yet with international partnerships, the nation has placed over 145,000 HIV-infected persons on antiretroviral therapies (ART) through May-2009. HIV clinical services are provided at > 215 clinical venues in all 11 of Mozambique’s provinces. Friends in Global Health (FGH), affiliated with Vanderbilt University in the United States (US), is a locally licensed non-governmental organization (NGO) working exclusively in small city and rural venues in Zambézia Province whose population reaches approximately 4 million persons.
Our approach to clinical capacity building is based on: 1) technical assistance to national health system facilities to implement ART clinical services at the district level, 2) human capacity development, and 3) health system strengthening. Challenges in this setting are daunting, including: 1) human resource constraints, 2) infrastructure limitations, 3) centralized care for large populations spread out over large distances, 4) continued high social stigma related to HIV, 5) limited livelihood options in rural areas and 6) limited educational opportunities in rural areas.
Sustainability in rural Mozambique will depend on transitioning services from emergency foreign partners to local authorities and continued funding. It will also require “wrap-around” programs that help build economic capacity with agricultural, educational, and commercial initiatives. Sustainability is undermined by serious health manpower and infrastructure limitations. Recent U.S. government pronouncements suggest that the U.S. President’s Emergency Plan for AIDS Relief will support concurrent community and business development.
FGH, with its Mozambican government counterparts, see the evolution of an emergency response to a sustainable chronic disease management program as an essential and logical step. We have presented six key challenges that are essential to address in rural Mozambique.
doi:10.4137/RRT.S4613
PMCID: PMC4119752  PMID: 25097450
3.  COL1A1 and miR-29b show lower expression levels during osteoblast differentiation of bone marrow stromal cells from Osteogenesis Imperfecta patients 
BMC Medical Genetics  2014;15:45.
Background
The majority of Osteogenesis Imperfecta (OI) cases are caused by mutations in one of the two genes, COL1A1 and COL1A2 encoding for the two chains that trimerize to form the procollagen 1 molecule. However, alterations in gene expression and microRNAs (miRNAs) are responsible for the regulation of cell fate determination and may be evolved in OI phenotype.
Methods
In this work, we analyzed the coding region and intron/exon boundaries of COL1A1 and COL1A2 genes by sequence analysis using an ABI PRISM 3130 automated sequencer and Big Dye Terminator Sequencing protocol. COL1A1 and miR-29b expression were also evaluated during the osteoblastic differentiation of mesenchymal stem cell (MSC) by qRT-PCR using an ABI7500 Sequence Detection System.
Results
We have identified eight novel mutations, where of four may be responsible for OI phenotype. COL1A1 and miR-29b showed lower expression values in OI type I and type III samples. Interestingly, one type III OI sample from a patient with Bruck Syndrome showed COL1A1 and miR-29b expressions alike those from normal samples.
Conclusions
Results suggest that the miR-29b mechanism directed to regulate collagen protein accumulation during mineralization is dependent upon the amount of COL1A1 mRNA. Taken together, results indicate that the lower levels observed in OI samples were not sufficient for the induction of miR-29b.
doi:10.1186/1471-2350-15-45
PMCID: PMC4101867  PMID: 24767406
Osteogenesis Imperfecta; miR-29b; COL1A1; Osteogenesis; Mesenchymalstem cells
4.  De novo transcriptome analysis of Hevea brasiliensis tissues by RNA-seq and screening for molecular markers 
BMC Genomics  2014;15:236.
Background
The rubber tree, Hevea brasiliensis, is a species native to the Brazilian Amazon region and it supplies almost all the world’s natural rubber, a strategic raw material for a variety of products. One of the major challenges for developing rubber tree plantations is adapting the plant to biotic and abiotic stress. Transcriptome analysis is one of the main approaches for identifying the complete set of active genes in a cell or tissue for a specific developmental stage or physiological condition.
Results
Here, we report on the sequencing, assembling, annotation and screening for molecular markers from a pool of H. brasiliensis tissues. A total of 17,166 contigs were successfully annotated. Then, 2,191 Single Nucleotide Variation (SNV) and 1.397 Simple Sequence Repeat (SSR) loci were discriminated from the sequences. From 306 putative, mainly non-synonymous SNVs located in CDS sequences, 191 were checked for their ability to characterize 23 Hevea genotypes by an allele-specific amplification technology. For 172 (90%), the nucleotide variation at the predicted genomic location was confirmed, thus validating the different steps from sequencing to the in silico detection of the SNVs.
Conclusions
This is the first study of the H. brasiliensis transcriptome, covering a wide range of tissues and organs, leading to the production of the first developed SNP markers. This process could be amplified to a larger set of in silico detected SNVs in expressed genes in order to increase the marker density in available and future genetic maps. The results obtained in this study will contribute to the H. brasiliensis genetic breeding program focused on improving of disease resistance and latex yield.
doi:10.1186/1471-2164-15-236
PMCID: PMC4051172  PMID: 24670056
Next generation sequencing; Molecular markers; KASP genotyping chemistry; Rubber tree
5.  TP53 p.R337H prevalence in a series of Brazilian hereditary breast cancer families 
Background
Approximately 5-10% of breast cancers are hereditary. Among hereditary syndromes, Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Li-Fraumeni Syndrome (LFS) have received the most attention. HBOC is due to mutations in the BRCA1 and BRCA2 genes and is characterized by breast adenocarcinoma and/or epithelial ovarian carcinoma. LFS is associated with germline mutations in TP53; the most frequent cancer types associated with this syndrome are sarcoma, breast cancer, leukemia, brain tumors and adrenocortical carcinomas. Other cancers related to LFS are found at lower frequencies. In Brazil, especially in the southern part of the country, a specific mutation in the TP53 gene, TP53 p.R337H, occurs at a high frequency in childhood adrenocortical tumors. It has been proposed that this mutation increases breast cancer risk in southern Brazilian women.
Methods
We carried out a case-control study to determine the prevalence of the TP53 p.R337H mutation in 28 female cancer patients attended at the Cancer Genetic Counseling Service of the General Hospital of the University of São Paulo Medical School of Ribeirão Preto who fulfilled Hereditary Breast and Ovary Cancer Syndrome genetic test criteria compared to healthy woman (controls). TP53 p.R337H mutation status was determined using the High Resolution Melting (HRM) method, followed by DNA sequencing. Fisher’s test was used to compare the prevalence of TP53 p.R337H in the patient and control groups.
Results
Two of the breast cancer cases (7.1%) and none of the controls carried the TP53 p.R337H mutation. At the time of the investigation, both cases fulfilled testing criteria for Hereditary Breast and Ovary Cancer Syndrome but not Li-Fraumeni or Li-Fraumeni-like Syndrome, based on genetic testing criteria of NCCN Clinical Practice Guidelines in Oncology (v.1.2010).
Conclusions
We suggest that genetic screening of Brazilian breast cancer patients who fulfill Hereditary Breast and Ovary Cancer Syndrome criteria and have a family history that includes other tumors of the LFS/LFL spectrum be tested for the TP53 p.R337H mutation.
doi:10.1186/1897-4287-12-8
PMCID: PMC3995619  PMID: 24625245
Breast cancer; TP53 mutation; BRCA1; High resolution melting
6.  High-Throughput Sequencing of a South American Amerindian 
PLoS ONE  2013;8(12):e83340.
The emergence of next-generation sequencing technologies allowed access to the vast amounts of information that are contained in the human genome. This information has contributed to the understanding of individual and population-based variability and improved the understanding of the evolutionary history of different human groups. However, the genome of a representative of the Amerindian populations had not been previously sequenced. Thus, the genome of an individual from a South American tribe was completely sequenced to further the understanding of the genetic variability of Amerindians. A total of 36.8 giga base pairs (Gbp) were sequenced and aligned with the human genome. These Gbp corresponded to 95.92% of the human genome with an estimated miscall rate of 0.0035 per sequenced bp. The data obtained from the alignment were used for SNP (single-nucleotide) and INDEL (insertion-deletion) calling, which resulted in the identification of 502,017 polymorphisms, of which 32,275 were potentially new high-confidence SNPs and 33,795 new INDELs, specific of South Native American populations. The authenticity of the sample as a member of the South Native American populations was confirmed through the analysis of the uniparental (maternal and paternal) lineages. The autosomal comparison distinguished the investigated sample from others continental populations and revealed a close relation to the Eastern Asian populations and Aboriginal Australian. Although, the findings did not discard the classical model of America settlement; it brought new insides to the understanding of the human population history. The present study indicates a remarkable genetic variability in human populations that must still be identified and contributes to the understanding of the genetic variability of South Native American populations and of the human populations history.
doi:10.1371/journal.pone.0083340
PMCID: PMC3875439  PMID: 24386182
7.  Bacteremia as a Cause of Fever in Ambulatory, HIV-Infected Mozambican Adults: Results and Policy Implications from a Prospective Observational Study 
PLoS ONE  2013;8(12):e83591.
Fever is typically treated empirically in rural Mozambique. We examined the distribution and antimicrobial susceptibility patterns of bacterial pathogens isolated from blood-culture specimens, and clinical characteristics of ambulatory HIV-infected febrile patients with and without bacteremia. This analysis was nested within a larger prospective observational study to evaluate the performance of new Mozambican guidelines for fever and anemia in HIV-infected adults (clinical trial registration NCT01681914, www.clinicaltrials.gov); the guidelines were designed to be used by non-physician clinicians who attended ambulatory HIV-infected patients in very resource-constrained peripheral health units. In 2012 (April-September), we recruited 258 HIV-infected adults with documented fever or history of recent fever in three sites within Zambézia Province, Mozambique. Although febrile patients were routinely tested for malaria, blood culture capacity was unavailable in Zambézia prior to study initiation. We confirmed bacteremia in 39 (15.1%) of 258 patients. The predominant organisms were non-typhoid Salmonella, nearly all resistant to multiple first-line antibiotics (ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole). Features most associated with bacteremia included higher temperature, lower CD4+ T-lymphocyte count, lower hemoglobin, and headache. Introduction of blood cultures allowed us to: 1) confirm bacteremia in a substantial proportion of patients; 2) tailor specific antimicrobial therapy for confirmed bacteremia based on known susceptibilities; 3) make informed choices of presumptive antibiotics for patients with suspected bacteremia; and 4) construct a preliminary clinical profile to help clinicians determine who would most likely benefit from presumptive bacteremia treatment. Our findings demonstrate that in resource-limited settings, there is urgent need to expand local microbiologic capacity to better identify and treat cases of bacteremia in HIV-infected and other patients, and to support surveillance. Data on the prevalence and susceptibility patterns of important pathogens can guide national formulary and prescribing practices.
doi:10.1371/journal.pone.0083591
PMCID: PMC3875454  PMID: 24386229
8.  Correction: Antiproliferative Effects of Fluoxetine on Colon Cancer Cells and in a Colonic Carcinogen Mouse Model 
PLoS ONE  2013;8(6):10.1371/annotation/919e5cc0-39bb-4465-babe-d2bdf12e89ff.
doi:10.1371/annotation/919e5cc0-39bb-4465-babe-d2bdf12e89ff
PMCID: PMC3677800
9.  Computational framework to support integration of biomolecular and clinical data within a translational approach 
BMC Bioinformatics  2013;14:180.
Background
The use of the knowledge produced by sciences to promote human health is the main goal of translational medicine. To make it feasible we need computational methods to handle the large amount of information that arises from bench to bedside and to deal with its heterogeneity. A computational challenge that must be faced is to promote the integration of clinical, socio-demographic and biological data. In this effort, ontologies play an essential role as a powerful artifact for knowledge representation. Chado is a modular ontology-oriented database model that gained popularity due to its robustness and flexibility as a generic platform to store biological data; however it lacks supporting representation of clinical and socio-demographic information.
Results
We have implemented an extension of Chado – the Clinical Module - to allow the representation of this kind of information. Our approach consists of a framework for data integration through the use of a common reference ontology. The design of this framework has four levels: data level, to store the data; semantic level, to integrate and standardize the data by the use of ontologies; application level, to manage clinical databases, ontologies and data integration process; and web interface level, to allow interaction between the user and the system. The clinical module was built based on the Entity-Attribute-Value (EAV) model. We also proposed a methodology to migrate data from legacy clinical databases to the integrative framework. A Chado instance was initialized using a relational database management system. The Clinical Module was implemented and the framework was loaded using data from a factual clinical research database. Clinical and demographic data as well as biomaterial data were obtained from patients with tumors of head and neck. We implemented the IPTrans tool that is a complete environment for data migration, which comprises: the construction of a model to describe the legacy clinical data, based on an ontology; the Extraction, Transformation and Load (ETL) process to extract the data from the source clinical database and load it in the Clinical Module of Chado; the development of a web tool and a Bridge Layer to adapt the web tool to Chado, as well as other applications.
Conclusions
Open-source computational solutions currently available for translational science does not have a model to represent biomolecular information and also are not integrated with the existing bioinformatics tools. On the other hand, existing genomic data models do not represent clinical patient data. A framework was developed to support translational research by integrating biomolecular information coming from different “omics” technologies with patient’s clinical and socio-demographic data. This framework should present some features: flexibility, compression and robustness. The experiments accomplished from a use case demonstrated that the proposed system meets requirements of flexibility and robustness, leading to the desired integration. The Clinical Module can be accessed in http://dcm.ffclrp.usp.br/caib/pg=iptrans.
doi:10.1186/1471-2105-14-180
PMCID: PMC3688149  PMID: 23742129
11.  1031-1034delTAAC (Leu125Stop): a novel familial UBE3A mutation causing Angelman syndrome in two siblings showing distinct phenotypes 
BMC Medical Genetics  2012;13:124.
Background
More than 50 mutations in the UBE3A gene (E6-AP ubiquitin protein ligase gene) have been found in Angelman syndrome patients with no deletion, no uniparental disomy, and no imprinting defect.
Case Presentation
We here describe a novel UBE3A frameshift mutation in two siblings who have inherited it from their asymptomatic mother. Despite carrying the same UBE3A mutation, the proband shows a more severe phenotype whereas his sister shows a milder phenotype presenting the typical AS features.
Conclusions
We hypothesized that the mutation Leu125Stop causes both severe and milder phenotypes. Potential mechanisms include: i) maybe the proband has an additional problem (genetic or environmental) besides the UBE3A mutation; ii) since the two siblings have different fathers, the UBE3A mutation is interacting with a different genetic variant in the proband that, by itself, does not cause problems but in combination with the UBE3A mutation causes the severe phenotype; iii) this UBE3A mutation alone can cause either typical AS or the severe clinical picture seen in the proband.
doi:10.1186/1471-2350-13-124
PMCID: PMC3543165  PMID: 23256887
Angelman syndrome; UBE3A gene; Imprinting; Novel mutation; Distinct phenotypes; HRM
12.  Antiproliferative Effects of Fluoxetine on Colon Cancer Cells and in a Colonic Carcinogen Mouse Model 
PLoS ONE  2012;7(11):e50043.
The antidepressant fluoxetine has been under discussion because of its potential influence on cancer risk. It was found to inhibit the development of carcinogen-induced preneoplastic lesions in colon tissue, but the mechanisms of action are not well understood. Therefore, we investigated anti-proliferative effects, and used HT29 colon tumor cells in vitro, as well as C57BL/6 mice exposed to intra-rectal treatment with the carcinogen N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) as models. Fluoxetine increased the percentage of HT29 cells in the G0/G1 phase of cell-cycle, and the expression of p27 protein. This was not related to an induction of apoptosis, reactive oxygen species or DNA damage. In vivo, fluoxetine reduced the development of MNNG-induced dysplasia and vascularization-related dysplasia in colon tissue, which was analyzed by histopathological techniques. An anti-proliferative potential of fluoxetine was observed in epithelial and stromal areas. It was accompanied by a reduction of VEGF expression and of the number of cells with angiogenic potential, such as CD133, CD34, and CD31-positive cell clusters. Taken together, our findings suggest that fluoxetine treatment targets steps of early colon carcinogenesis. This confirms its protective potential, explaining at least partially the lower colon cancer risk under antidepressant therapy.
doi:10.1371/journal.pone.0050043
PMCID: PMC3507893  PMID: 23209640
13.  High-throughput sequencing of black pepper root transcriptome 
BMC Plant Biology  2012;12:168.
Background
Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper.
Results
The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology.
Conclusions
This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.
doi:10.1186/1471-2229-12-168
PMCID: PMC3487918  PMID: 22984782
14.  Expression of human protein S100A7 (psoriasin), preparation of antibody and application to human larynx squamous cell carcinoma 
BMC Research Notes  2011;4:494.
Background
Up-regulation of S100A7 (Psoriasin), a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag) was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray.
Results
The rS100A7 (His-tag) protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag) rabbit serum (polyclonal antibody anti-rS100A7). The molecular weight of rS100A7 (His-tag) protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da). Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue.
Conclusions
The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future.
doi:10.1186/1756-0500-4-494
PMCID: PMC3278597  PMID: 22082027
S100A7 (Psoriasin); Recombinant protein; Production of a polyclonal antibody; E. coli BL21::DE3; Mass spectrometry
16.  Distinct patterns of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual 
Nucleic Acids Research  2011;39(14):6056-6068.
Although patterns of somatic alterations have been reported for tumor genomes, little is known on how they compare with alterations present in non-tumor genomes. A comparison of the two would be crucial to better characterize the genetic alterations driving tumorigenesis. We sequenced the genomes of a lymphoblastoid (HCC1954BL) and a breast tumor (HCC1954) cell line derived from the same patient and compared the somatic alterations present in both. The lymphoblastoid genome presents a comparable number and similar spectrum of nucleotide substitutions to that found in the tumor genome. However, a significant difference in the ratio of non-synonymous to synonymous substitutions was observed between both genomes (P = 0.031). Protein–protein interaction analysis revealed that mutations in the tumor genome preferentially affect hub-genes (P = 0.0017) and are co-selected to present synergistic functions (P < 0.0001). KEGG analysis showed that in the tumor genome most mutated genes were organized into signaling pathways related to tumorigenesis. No such organization or synergy was observed in the lymphoblastoid genome. Our results indicate that endogenous mutagens and replication errors can generate the overall number of mutations required to drive tumorigenesis and that it is the combination rather than the frequency of mutations that is crucial to complete tumorigenic transformation.
doi:10.1093/nar/gkr221
PMCID: PMC3152357  PMID: 21493686
17.  Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9 
PLoS ONE  2011;6(1):e15656.
A total of 172 persons from nine South Amerindian, three African and one Eskimo populations were studied in relation to the Paired box gene 9 (PAX9) exon 3 (138 base pairs) as well as its 5′and 3′flanking intronic segments (232 bp and 220 bp, respectively) and integrated with the information available for the same genetic region from individuals of different geographical origins. Nine mutations were scored in exon 3 and six in its flanking regions; four of them are new South American tribe-specific singletons. Exon3 nucleotide diversity is several orders of magnitude higher than its intronic regions. Additionally, a set of variants in the PAX9 and 101 other genes related with dentition can define at least some dental morphological differences between Sub-Saharan Africans and non-Africans, probably associated with adaptations after the modern human exodus from Africa. Exon 3 of PAX9 could be a good molecular example of how evolvability works.
doi:10.1371/journal.pone.0015656
PMCID: PMC3029280  PMID: 21298044
18.  Biochemical and genetic analysis of butyrylcholinesterase (BChE) in a family, due to prolonged neuromuscular blockade after the use of succinylcholine 
Genetics and Molecular Biology  2011;34(1):40-44.
Butyrylcholinesterase (BChE) is a plasma enzyme that catalyzes the hydrolysis of choline esters, including the muscle-relaxant succinylcholine and mivacurium. Patients who present sustained neuromuscular blockade after using succinylcholine usually carry BChE variants with reduced enzyme activity or an acquired BChE deficiency. We report here the molecular basis of the BCHE gene underlying the slow catabolism of succinylcholine in a patient who underwent endoscopic nasal surgery. We measured the enzyme activity of BChE and extracted genomic DNA in order to study the promoter region and all exons of the BCHE gene of the patient, her parents and siblings. PCR products were sequenced and compared with reference sequences from GenBank. We detected that the patient and one of her brothers have two homozygous mutations: nt1615 GCA > ACA (Ala539Thr), responsible for the K variant, and nt209 GAT > GGT (Asp70Gly), which produces the atypical variant A. Her parents and two of her brothers were found to be heterozygous for the AK allele, and another brother is homozygous for the normal allele. Sequence analysis of exon 1 including 5′UTR showed that the proband and her brother are homozygous for –116GG. The AK/AK genotype is considered the most frequent in hereditary hypocholinesterasemia (44%). This work demonstrates the importance of defining the phenotype and genotype of the BCHE gene in patients who are subjected to neuromuscular block by succinylcholine, because of the risk of prolonged neuromuscular paralysis.
doi:10.1590/S1415-47572011000100008
PMCID: PMC3085371  PMID: 21637541
hereditary hypocholinesterasemia; butyrylcholinesterase; succinylcholine BCHE gene; DNA polymorphism
19.  Ultra-Deep Sequencing Reveals the microRNA Expression Pattern of the Human Stomach 
PLoS ONE  2010;5(10):e13205.
Background
While microRNAs (miRNAs) play important roles in tissue differentiation and in maintaining basal physiology, little is known about the miRNA expression levels in stomach tissue. Alterations in the miRNA profile can lead to cell deregulation, which can induce neoplasia.
Methodology/Principal Findings
A small RNA library of stomach tissue was sequenced using high-throughput SOLiD sequencing technology. We obtained 261,274 quality reads with perfect matches to the human miRnome, and 42% of known miRNAs were identified. Digital Gene Expression profiling (DGE) was performed based on read abundance and showed that fifteen miRNAs were highly expressed in gastric tissue. Subsequently, the expression of these miRNAs was validated in 10 healthy individuals by RT-PCR showed a significant correlation of 83.97% (P<0.05). Six miRNAs showed a low variable pattern of expression (miR-29b, miR-29c, miR-19b, miR-31, miR-148a, miR-451) and could be considered part of the expression pattern of the healthy gastric tissue.
Conclusions/Significance
This study aimed to validate normal miRNA profiles of human gastric tissue to establish a reference profile for healthy individuals. Determining the regulatory processes acting in the stomach will be important in the fight against gastric cancer, which is the second-leading cause of cancer mortality worldwide.
doi:10.1371/journal.pone.0013205
PMCID: PMC2951895  PMID: 20949028
20.  ProbFAST: Probabilistic Functional Analysis System Tool 
BMC Bioinformatics  2010;11:161.
Background
The post-genomic era has brought new challenges regarding the understanding of the organization and function of the human genome. Many of these challenges are centered on the meaning of differential gene regulation under distinct biological conditions and can be performed by analyzing the Multiple Differential Expression (MDE) of genes associated with normal and abnormal biological processes. Currently MDE analyses are limited to usual methods of differential expression initially designed for paired analysis.
Results
We proposed a web platform named ProbFAST for MDE analysis which uses Bayesian inference to identify key genes that are intuitively prioritized by means of probabilities. A simulated study revealed that our method gives a better performance when compared to other approaches and when applied to public expression data, we demonstrated its flexibility to obtain relevant genes biologically associated with normal and abnormal biological processes.
Conclusions
ProbFAST is a free accessible web-based application that enables MDE analysis on a global scale. It offers an efficient methodological approach for MDE analysis of a set of genes that are turned on and off related to functional information during the evolution of a tumor or tissue differentiation. ProbFAST server can be accessed at http://gdm.fmrp.usp.br/probfast.
doi:10.1186/1471-2105-11-161
PMCID: PMC2868004  PMID: 20353576
21.  Epigenetic Silencing of CRABP2 and MX1 in Head and Neck Tumors12 
Neoplasia (New York, N.Y.)  2009;11(12):1329-1339.
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous disease affecting the epithelium of the oral cavity, pharynx and larynx. Conditions of most patients are diagnosed at late stages of the disease, and no sensitive and specific predictors of aggressive behavior have been identified yet. Therefore, early detection and prognostic biomarkers are highly desirable for a more rational management of the disease. Hypermethylation of CpG islands is one of the most important epigenetic mechanisms that leads to gene silencing in tumors and has been extensively used for the identification of biomarkers. In this study, we combined rapid subtractive hybridization and microarray analysis in a hierarchical manner to select genes that are putatively reactivated by the demethylating agent 5-aza-2′-deoxycytidine (5Aza-dC) in HNSCC cell lines (FaDu, UM-SCC-14A, UM-SCC-17A, UM-SCC-38A). This combined analysis identified 78 genes, 35 of which were reactivated in at least 2 cell lines and harbored a CpG island at their 5′ region. Reactivation of 3 of these 35 genes (CRABP2, MX1, and SLC15A3) was confirmed by quantitative real-time polymerase chain reaction (PCR; fold change, ≥3). Bisulfite sequencing of their CpG islands revealed that they are indeed differentially methylated in the HNSCC cell lines. Using methylation-specific PCR, we detected a higher frequency of CRABP2 (58.1% for region 1) and MX1 (46.3%) hypermethylation in primary HNSCC when compared with lymphocytes from healthy individuals. Finally, absence of the CRABP2 protein was associated with decreased disease-free survival rates, supporting a potential use of CRABP2 expression as a prognostic biomarker for HNSCC patients.
PMCID: PMC2794514  PMID: 20019841
22.  A score system for quality evaluation of RNA sequence tags: an improvement for gene expression profiling 
BMC Bioinformatics  2009;10:170.
Background
High-throughput molecular approaches for gene expression profiling, such as Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS) or Sequencing-by-Synthesis (SBS) represent powerful techniques that provide global transcription profiles of different cell types through sequencing of short fragments of transcripts, denominated sequence tags. These techniques have improved our understanding about the relationships between these expression profiles and cellular phenotypes. Despite this, more reliable datasets are still necessary. In this work, we present a web-based tool named S3T: Score System for Sequence Tags, to index sequenced tags in accordance with their reliability. This is made through a series of evaluations based on a defined rule set. S3T allows the identification/selection of tags, considered more reliable for further gene expression analysis.
Results
This methodology was applied to a public SAGE dataset. In order to compare data before and after filtering, a hierarchical clustering analysis was performed in samples from the same type of tissue, in distinct biological conditions, using these two datasets. Our results provide evidences suggesting that it is possible to find more congruous clusters after using S3T scoring system.
Conclusion
These results substantiate the proposed application to generate more reliable data. This is a significant contribution for determination of global gene expression profiles. The library analysis with S3T is freely available at . S3T source code and datasets can also be downloaded from the aforementioned website.
doi:10.1186/1471-2105-10-170
PMCID: PMC2701951  PMID: 19500384
23.  Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries 
BMC Medical Genomics  2008;1:56.
Background
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes.
Methods
Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries.
Results
Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues.
Conclusion
To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.
doi:10.1186/1755-8794-1-56
PMCID: PMC2629771  PMID: 19014460
24.  DNA Sequencing Confirms the Involvement of Leishmania (L.) Amazonensis in American Tegumentary Leishmaniasis in the State of São Paulo, Brazil 
Clinics (Sao Paulo, Brazil)  2008;63(4):451-456.
INTRODUCTION
American tegumentary leishmaniasis (ATL) represents one of the most important public health issues in the world. An increased number of autochthonous cases of ATL in the Northeastern region of São Paulo State has been documented in the last few years, leading to a desire to determine the Leishmania species implicated.
METHODS
PCR followed by DNA sequencing was carried out to identify a 120bp fragment from the universal kDNA minicircle of the genus Leishmania in 61 skin or mucosal biopsies from patients with ATL.
RESULTS
DNA sequencing permitted the identification of a particular 15bp fragment (5’ …GTC TTT GGG GCA AGT... 3’) in all samples. Analysis by the neighbor-joining method showed the occurrence of two distinct groups related to the genus Viannia (V) and Leishmania (L), each with two subgroups. Autochthonous cases with identity to a special Leishmania sequence not referenced in Genbank predominated in subgroup V.1, suggesting the possible existence of a subtype or mutation of Leishmania Viannia in this region. In the subgroup L.2, which showed identity with a known sequence of L. (L.) amazonensis, there was a balanced distribution of autochthonous and non-autochthonous cases, including the mucosal and mucocutaneus forms in four patients. The last observation may direct us to new concepts, since the mucosal compromising has commonly been attributed to L. (V.) braziliensis, even though L. (L.) amazonensis is more frequent in the Amazonian region.
CONCLUSIONS
These results confirm the pattern of distribution and possible mutations of these species, as well as the change in the clinical form presentation of ATL in the São Paulo State.
doi:10.1590/S1807-59322008000400007
PMCID: PMC2664119  PMID: 18719754
Tegumentary; Leishmaniasis; Phylogenetic analysis; L. (L.) Amazonensis; L. (V.) Braziliensis; Molecular epidemiology
25.  PLAC1, a trophoblast-specific cell surface protein, is expressed in a range of human tumors and elicits spontaneous antibody responses 
Identification of genes that are upregulated in tumors, and whose normal expression excludes adult somatic tissues but includes germline and/or embryonic tissues, has resulted in a rich variety of cancer antigens that are attractive targets for cancer vaccine and other therapeutic approaches. In the present study, we extended this approach to include genes strongly and restrictively expressed in the placenta by mining publicly available SAGE and EST databases. We identified a number of genes with high expression in placenta and different cancer types but with relatively restricted expression in normal tissues. The gene with the most distinctive expression pattern was found to be PLAC1, which encodes a putative cell surface protein that is highly expressed in placenta, testis, cancer cell lines and lung tumors. Hence we have designated it CT92. We found by ELISA that PLAC1 is immunogenic in a subset of cancer patients and healthy women. Its physical and expression characteristics render it a potential target for both active and passive cancer immunotherapeutic strategies.
PMCID: PMC2935750  PMID: 17983203
human; tumor antigens; PLAC1; mRNA; tissue distribution; humoral immunity

Results 1-25 (29)