Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Membrane Contact Sites 
Plant Signaling & Behavior  2007;2(3):185-187.
Chloroplasts and their surrounding cell are highly interdependent. One example is lipid metabolism, where the cell depends on its chloroplasts to provide fatty acids for lipid synthesis in the endoplasmic reticulum (ER) and in turn, chloroplasts rely on import of lipid precursors from the ER. Despite its fundamental importance, the route for lipid trafficking into and out of chloroplasts remains unknown. Biochemical studies of plant membrane lipid metabolism have suggested the possibility of lipid transport at membrane contact sites (MCSs) between the ER and chloroplasts. With the aid of optical manipulation, we recently could present physical evidence for this association. Leaf protoplasts isolated from Arabidopsis thaliana expressing green fluorescent protein (GFP) in the ER lumen were observed by confocal microscopy. A laser scalpel was used to rupture the protoplasts. ER fragments associated with the released chloroplasts could be stretched out by optical tweezers but remained attached to the chloroplast surface, even when a stretching force of 400 pN was applied. We thus provided the first physical evidence for MCSs between two membranes and we propose for the ER-chloroplast pair, that such tight associations are involved in bidirectional lipid trafficking between the two compartments.
PMCID: PMC2634053  PMID: 19704692
membrane contact site; optical scalpel; optical tweezers; lipid trafficking; chloroplast; endoplasmic reticulum; plasma membrane
2.  Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells 
BMC Plant Biology  2010;10:274.
Alamethicin is a membrane-active peptide isolated from the beneficial root-colonising fungus Trichoderma viride. This peptide can insert into membranes to form voltage-dependent pores. We have previously shown that alamethicin efficiently permeabilises the plasma membrane, mitochondria and plastids of cultured plant cells. In the present investigation, tobacco cells (Nicotiana tabacum L. cv Bright Yellow-2) were pre-treated with elicitors of defence responses to study whether this would affect permeabilisation.
Oxygen consumption experiments showed that added cellulase, already upon a limited cell wall digestion, induced a cellular resistance to alamethicin permeabilisation. This effect could not be elicited by xylanase or bacterial elicitors such as flg22 or elf18. The induction of alamethicin resistance was independent of novel protein synthesis. Also, the permeabilisation was unaffected by the membrane-depolarising agent FCCP. As judged by lipid analyses, isolated plasma membranes from cellulase-pretreated tobacco cells contained less negatively charged phospholipids (PS and PI), yet higher ratios of membrane lipid fatty acid to sterol and to protein, as compared to control membranes.
We suggest that altered membrane lipid composition as induced by cellulase activity may render the cells resistant to alamethicin. This induced resistance could reflect a natural process where the plant cells alter their sensitivity to membrane pore-forming agents secreted by Trichoderma spp. to attack other microorganisms, and thus adding to the beneficial effect that Trichoderma has for plant root growth. Furthermore, our data extends previous reports on artificial membranes on the importance of lipid packing and charge for alamethicin permeabilisation to in vivo conditions.
PMCID: PMC3017840  PMID: 21156059
3.  LysoPC acyltransferase/PC transacylase activities in plant plasma membrane and plasma membrane-associated endoplasmic reticulum 
BMC Plant Biology  2007;7:64.
The phospholipids of the plant plasma membrane are synthesized in the endoplasmic reticulum (ER). The majority of these lipids reach the plasma membrane independently of the secretory vesicular pathway. Phospholipid delivery to the mitochondria and chloroplasts of plant cells also bypasses the secretory pathway and here it has been proposed that lysophospholipids are transported at contact sites between specific regions of the ER and the respective organelle, followed by lysophospholipid acylation in the target organelle. To test the hypothesis that a corresponding mechanism operates to transport phospholipids to the plasma membrane outside the secretory pathway, we investigated whether lysolipid acylation occurs also in the plant plasma membrane and whether this membrane, like the chloroplasts and mitochondria, is in close contact with the ER.
The plant plasma membrane readily incorporated the acyl chain of acyl-CoA into phospholipids. Oleic acid was preferred over palmitic acid as substrate and acyl incorporation occurred predominantly into phosphatidylcholine (PC). Phospholipase A2 stimulated the reaction, as did exogenous lysoPC when administered in above critical micellar concentrations. AgNO3 was inhibitory. The lysophospholipid acylation reaction was higher in a membrane fraction that could be washed off the isolated plasma membranes after repeated freezing and thawing cycles in a medium with lowered pH. This fraction exhibited several ER-like characteristics. When plasma membranes isolated from transgenic Arabidopsis expressing green fluorescent protein in the ER lumen were observed by confocal microscopy, membranes of ER origin were associated with the isolated plasma membranes.
We conclude that a lysoPC acylation activity is associated with plant plasma membranes and cannot exclude a PC transacylase activity. It is highly plausible that the enzyme(s) resides in a fraction of the ER, closely associated with the plasma membrane, or in both. We suggest that this fraction might be the equivalent of the mitochondria associated membrane of ER origin that delivers phospholipids to the mitochondria, and to the recently isolated ER-derived membrane fraction that is in close contact with chloroplasts. The in situ function of the lysoPC acylation/PC transacylase activity is unknown, but involvement in lipid delivery from the ER to the plasma membrane is suggested.
PMCID: PMC2241621  PMID: 18045483
4.  A chloroplast-localized vesicular transport system: a bio-informatics approach 
BMC Genomics  2004;5:40.
The thylakoid membrane of higher plant chloroplasts is made of membrane lipids synthesized in the chloroplast envelope. As the inner envelope membrane and the thylakoid are separated by the aqueous stroma, a system for transporting newly synthesized lipids from the inner envelope membrane to the thylakoid is required. Ultrastructural as well as biochemical studies have indicated that lipid transport inside the chloroplast could be mediated by a system similar in characteristics to vesicular trafficking in the cytosol. If indeed the chloroplast system is related to cytosolic vesicular trafficking systems, a certain degree of sequence conservation between components of the chloroplast and the cytosolic systems could be expected. We used the Arabidopsis thaliana genome and web-based subcellular localization prediction tools to search for chloroplast-localized homologues of cytosolic vesicular trafficking components.
Out of the 28952 hypothetical proteins in the A. thaliana genome sequence, 1947 were predicted to be chloroplast-localized by two different subcellular localization predictors. In this chloroplast protein dataset, strong homologues for the main coat proteins of COPII coated cytosolic vesicles were found. Homologues of the small GTPases ARF1 and Sar1 were also found in the chloroplast protein dataset.
Our database search approach gives further support to that a system similar to cytosolic vesicular trafficking is operational inside the chloroplast. However, solid biochemical data is needed to support the chloroplast localization of the identified proteins as well as their involvment in intra-chloroplast lipid trafficking.
PMCID: PMC481061  PMID: 15236667

Results 1-4 (4)