PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Identification of candidate genome regions controlling disease resistance in Arachis 
BMC Plant Biology  2009;9:112.
Background
Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.
Results
In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.
Conclusion
Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.
doi:10.1186/1471-2229-9-112
PMCID: PMC2739205  PMID: 19698131
2.  A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus 
Journal of Experimental Botany  2009;60(12):3353-3365.
Neutral/alkaline invertases are a subgroup, confined to plants and cyanobacteria, of a diverse family of enzymes. A family of seven closely-related genes, LjINV1–LjINV7, is described here and their expression in the model legume, Lotus japonicus, is examined. LjINV1 previously identified as encoding a nodule-enhanced isoform is the predominant isoform present in all parts of the plant. Mutants for two isoforms, LjINV1 and LjINV2, were isolated using TILLING. A premature stop codon allele of LjINV2 had no effect on enzyme activity nor did it show a visible phenotype. For LjINV1, premature stop codon and missense mutations were obtained and the phenotype of the mutants examined. Recovery of homozygous mutants was problematic, but their phenotype showed a severe reduction in growth of the root and the shoot, a change in cellular development, and impaired flowering. The cellular organization of both roots and leaves was altered; leaves were smaller and thicker with extra layers of cells and roots showed an extended and broader zone of cell division. Moreover, anthers contained no pollen. Both heterozygotes and homozygous mutants showed decreased amounts of enzyme activity in nodules and shoot tips. Shoot tips also contained up to a 9-fold increased level of sucrose. However, mutants were capable of forming functional root nodules. LjINV1 is therefore crucial to whole plant development, but is clearly not essential for nodule formation or function.
doi:10.1093/jxb/erp169
PMCID: PMC2724688  PMID: 19474088
Cellular development; legume; Lotus japonicus; neutral/alkaline invertase; mutants; plant development; sucrose metabolism; TILLING

Results 1-2 (2)