PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  CYP98A22, a phenolic ester 3’-hydroxylase specialized in the synthesis of chlorogenic acid, as a new tool for enhancing the furanocoumarin concentration in Ruta graveolens 
BMC Plant Biology  2012;12:152.
Background
Furanocoumarins are molecules with proven therapeutic properties and are produced in only a small number of medicinal plant species such as Ruta graveolens. In vivo, these molecules play a protective role against phytophageous insect attack. Furanocoumarins are members of the phenylpropanoids family, and their biosynthetic pathway is initiated from p-coumaroyl coA. The enzymes belonging to the CYP98A cytochrome P450 family have been widely described as being aromatic meta-hydroxylases of various substrates, such as p-coumaroyl ester derivatives, and are involved in the synthesis of coumarins such as scopoletin. In furanocoumarin-producing plants, these enzymes catalyze the step directly downstream of the junction with the furanocoumarin biosynthetic pathway and might indirectly impact their synthesis.
Results
In this work, we describe the cloning and functional characterization of the first CYP98A encoding gene isolated from R. graveolens. Using Nicotiana benthamiana as a heterologous expression system, we have demonstrated that this enzyme adds a 3-OH to p-coumaroyl ester derivatives but is more efficient to convert p-coumaroyl quinate into chlorogenic acid than to metabolize p-coumaroyl shikimate. Plants exposed to UV-B stress showed an enhanced expression level of the corresponding gene. The R. graveolens cyp98a22 open reading frame and the orthologous Arabidopsis thaliana cyp98a3 open reading frame were overexpressed in stable transgenic Ruta plants. Both plant series were analyzed for their production of scopoletin and furanocoumarin. A detailed analysis indicates that both genes enhance the production of furanocoumarins but that CYP98A22, unlike CYP98A3, doesn’t affect the synthesis of scopoletin.
Conclusions
The overexpression of CYP98A22 positively impacts the concentration of furanocoumarins in R. graveolens. This gene is therefore a valuable tool to engineer plants with improved therapeutical values that might also be more resistant to phytophageous insects.
doi:10.1186/1471-2229-12-152
PMCID: PMC3493272  PMID: 22931486
2.  An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana 
BMC Plant Biology  2008;8:47.
Background
Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism.
Results
We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here.
Conclusion
The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling.
doi:10.1186/1471-2229-8-47
PMCID: PMC2383897  PMID: 18433503

Results 1-2 (2)