PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  Phosphoprotein SAK1 is a regulator of acclimation to singlet oxygen in Chlamydomonas reinhardtii 
eLife  2014;3:e02286.
Singlet oxygen is a highly toxic and inevitable byproduct of oxygenic photosynthesis. The unicellular green alga Chlamydomonas reinhardtii is capable of acclimating specifically to singlet oxygen stress, but the retrograde signaling pathway from the chloroplast to the nucleus mediating this response is unknown. Here we describe a mutant, singlet oxygen acclimation knocked-out 1 (sak1), that lacks the acclimation response to singlet oxygen. Analysis of genome-wide changes in RNA abundance during acclimation to singlet oxygen revealed that SAK1 is a key regulator of the gene expression response during acclimation. The SAK1 gene encodes an uncharacterized protein with a domain conserved among chlorophytes and present in some bZIP transcription factors. The SAK1 protein is located in the cytosol, and it is induced and phosphorylated upon exposure to singlet oxygen, suggesting that it is a critical intermediate component of the retrograde signal transduction pathway leading to singlet oxygen acclimation.
DOI: http://dx.doi.org/10.7554/eLife.02286.001
eLife digest
Plants, algae and some bacteria use photosynthesis to extract energy from sunlight and to convert carbon dioxide into the sugars needed for growth. One by-product of photosynthesis is a highly toxic molecule called singlet oxygen. Typically, organisms deal with stressful events such as the presence of toxic molecules by producing new proteins. However, protein production is generally initiated in the nucleus of the cell, and photosynthesis is carried out in structures called chloroplasts. Cells must therefore be able to alert the nucleus to the presence of toxic levels of singlet oxygen in the chloroplasts.
Like some plants that can withstand a gradual decrease in temperature, but not a sudden cold snap, the alga Chlamydomonas reinhardtii is capable of resisting high doses of singlet oxygen if it has previously been exposed to low doses of the molecule. Wakao et al. exploited this ability to hunt for algae that are unable to acclimate to singlet oxygen, and found that these cells are unable to produce a protein called SAK1.
Wakao et al. reveal that many factors involved in the algae's cellular response to singlet oxygen depend on the presence of SAK1. In addition, the response of the algae cells to singlet oxygen differs to the one seen in the model plant Arabidopsis thaliana, suggesting that the two organisms have found different ways to deal with the same problem.
The location of a protein in a cell can give clues to its function. SAK1 is present in the fluid surrounding cellular compartments—the cytosol—which is consistent with it acting as a signaling molecule between the chloroplast and the nucleus. Wakao et al. present further evidence for this hypothesis by demonstrating that the number of phosphate groups attached on SAK1 changes when exposed to singlet oxygen—a feature often seen in signaling proteins. In addition, part of SAK1 resembles proteins that can bind to DNA, which indicates that SAK1 may be directly involved in initiating protein production.
The discovery of SAK1 represents a starting point for understanding how the site of photosynthesis, the chloroplast, communicates with the nucleus. It also has implications for developing plants and algae that have a higher tolerance to environmental stress conditions for agriculture and biofuel production.
DOI: http://dx.doi.org/10.7554/eLife.02286.002
doi:10.7554/eLife.02286
PMCID: PMC4067076  PMID: 24859755
chlamydomonas; singlet oxygen; retrograde signaling; photosynthesis; photo-oxidative stress; other
2.  Photosynthesis of Root Chloroplasts Developed in Arabidopsis Lines Overexpressing GOLDEN2-LIKE Transcription Factors 
Plant and Cell Physiology  2013;54(8):1365-1377.
In plants, genes involved in photosynthesis are encoded separately in nuclei and plastids, and tight cooperation between these two genomes is therefore required for the development of functional chloroplasts. Golden2-like (GLK) transcription factors are involved in chloroplast development, directly targeting photosynthesis-associated nuclear genes for up-regulation. Although overexpression of GLKs leads to chloroplast development in non-photosynthetic organs, the mechanisms of coordination between the nuclear gene expression influenced by GLKs and the photosynthetic processes inside chloroplasts are largely unknown. To elucidate the impact of GLK-induced expression of photosynthesis-associated nuclear genes on the construction of photosynthetic systems, chloroplast morphology and photosynthetic characteristics in greenish roots of Arabidopsis thaliana lines overexpressing GLKs were compared with those in wild-type roots and leaves. Overexpression of GLKs caused up-regulation of not only their direct targets but also non-target nuclear and plastid genes, leading to global induction of chloroplast biogenesis in the root. Large antennae relative to reaction centers were observed in wild-type roots and were further enhanced by GLK overexpression due to the increased expression of target genes associated with peripheral light-harvesting antennae. Photochemical efficiency was lower in the root chloroplasts than in leaf chloroplasts, suggesting that the imbalance in the photosynthetic machinery decreases the efficiency of light utilization in root chloroplasts. Despite the low photochemical efficiency, root photosynthesis contributed to carbon assimilation in Arabidopsis. Moreover, GLK overexpression increased CO2 fixation and promoted phototrophic performance of the root, showing the potential of root photosynthesis to improve effective carbon utilization in plants.
doi:10.1093/pcp/pct086
PMCID: PMC3730084  PMID: 23749810
Arabidopsis root; Chloroplast development; Construction of photosynthetic systems; GLK; Photosynthesis
3.  Atomic Force Microscopy of Photosystem II and Its Unit Cell Clustering Quantitatively Delineate the Mesoscale Variability in Arabidopsis Thylakoids 
PLoS ONE  2014;9(7):e101470.
Photoautotrophic organisms efficiently regulate absorption of light energy to sustain photochemistry while promoting photoprotection. Photoprotection is achieved in part by triggering a series of dissipative processes termed non-photochemical quenching (NPQ), which depend on the re-organization of photosystem (PS) II supercomplexes in thylakoid membranes. Using atomic force microscopy, we characterized the structural attributes of grana thylakoids from Arabidopsis thaliana to correlate differences in PSII organization with the role of SOQ1, a recently discovered thylakoid protein that prevents formation of a slowly reversible NPQ state. We developed a statistical image analysis suite to discriminate disordered from crystalline particles and classify crystalline arrays according to their unit cell properties. Through detailed analysis of the local organization of PSII supercomplexes in ordered and disordered phases, we found evidence that interactions among light-harvesting antenna complexes are weakened in the absence of SOQ1, inducing protein rearrangements that favor larger separations between PSII complexes in the majority (disordered) phase and reshaping the PSII crystallization landscape. The features we observe are distinct from known protein rearrangements associated with NPQ, providing further support for a role of SOQ1 in a novel NPQ pathway. The particle clustering and unit cell methodology developed here is generalizable to multiple types of microscopy and will enable unbiased analysis and comparison of large data sets.
doi:10.1371/journal.pone.0101470
PMCID: PMC4090009  PMID: 25007326
4.  Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress 
Plant, cell & environment  2012;36(2):438-453.
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
doi:10.1111/j.1365-3040.2012.02586.x
PMCID: PMC3640260  PMID: 22860767
Arabidopsis thaliana; carotene; carotenoid; leaf growth; lutein; non-photochemical quenching; photoprotection; root growth; sunflecks; xanthophyll cycle
5.  A Conserved Rubredoxin Is Necessary for Photosystem II Accumulation in Diverse Oxygenic Photoautotrophs* 
The Journal of Biological Chemistry  2013;288(37):26688-26696.
Background: Photosystem II is an essential component of oxygenic photosynthesis.
Results: Photosystem II is specifically decreased in rubredoxin mutants of the green alga Chlamydomonas reinhardtii, the cyanobacterium Synechocystis sp. PCC 6803, and the plant Arabidopsis thaliana.
Conclusion: Rubredoxin is required for photosystem II, and not photosystem I, accumulation in these organisms.
Significance: Rubredoxin was likely important in the evolution of oxygenic photosynthesis.
In oxygenic photosynthesis, two photosystems work in tandem to harvest light energy and generate NADPH and ATP. Photosystem II (PSII), the protein-pigment complex that uses light energy to catalyze the splitting of water, is assembled from its component parts in a tightly regulated process that requires a number of assembly factors. The 2pac mutant of the unicellular green alga Chlamydomonas reinhardtii was isolated and found to have no detectable PSII activity, whereas other components of the photosynthetic electron transport chain, including photosystem I, were still functional. PSII activity was fully restored by complementation with the RBD1 gene, which encodes a small iron-sulfur protein known as a rubredoxin. Phylogenetic evidence supports the hypothesis that this rubredoxin and its orthologs are unique to oxygenic phototrophs and distinct from rubredoxins in Archaea and bacteria (excluding cyanobacteria). Knockouts of the rubredoxin orthologs in the cyanobacterium Synechocystis sp. PCC 6803 and the plant Arabidopsis thaliana were also found to be specifically affected in PSII accumulation. Taken together, our data suggest that this rubredoxin is necessary for normal PSII activity in a diverse set of organisms that perform oxygenic photosynthesis.
doi:10.1074/jbc.M113.487629
PMCID: PMC3772215  PMID: 23900844
Arabidopsis; Chlamydomonas; Chloroplast; Electron transport; Iron-sulfur protein; Photosynthesis; Photosystem II; Synechocystis; Rubredoxin
6.  Novel Thylakoid Membrane GreenCut Protein CPLD38 Impacts Accumulation of the Cytochrome b6f Complex and Associated Regulatory Processes* 
The Journal of Biological Chemistry  2013;288(10):7024-7036.
Background: The GreenCut is a group of ∼600 green-lineage-specific proteins hypothetically involved in photosynthesis.
Results: A Chlamydomonas reinhardtii mutant disrupted for GreenCut gene CPLD38 has a marked reduction in cytochrome b6f and an increase in chlororespiration.
Conclusion: CPLD38 is essential for accumulating cytochrome b6f and balancing chlororespiration and photosynthesis.
Significance: This analysis demonstrates the importance of a GreenCut protein in photosynthesis.
Based on previous comparative genomic analyses, a set of nearly 600 polypeptides was identified that is present in green algae and flowering and nonflowering plants but is not present (or is highly diverged) in nonphotosynthetic organisms. The gene encoding one of these “GreenCut” proteins, CPLD38, is in the same operon as ndhL in most cyanobacteria; the NdhL protein is part of a complex essential for cyanobacterial respiration. A cpld38 mutant of Chlamydomonas reinhardtii does not grow on minimal medium, is high light-sensitive under photoheterotrophic conditions, has lower accumulation of photosynthetic complexes, reduced photosynthetic electron flow to P700+, and reduced photochemical efficiency of photosystem II (ΦPSII); these phenotypes are rescued by a wild-type copy of CPLD38. Single turnover flash experiments and biochemical analyses demonstrated that cytochrome b6f function was severely compromised, and the levels of transcripts and polypeptide subunits of the cytochrome b6f complex were also significantly lower in the cpld38 mutant. Furthermore, subunits of the cytochrome b6f complex in mutant cells turned over much more rapidly than in wild-type cells. Interestingly, PTOX2 and NDA2, two major proteins involved in chlororespiration, were more than 5-fold higher in mutants relative to wild-type cells, suggesting a shift in the cpld38 mutant from photosynthesis toward chlororespiratory metabolism, which is supported by experiments that quantify the reduction state of the plastoquinone pool. Together, these findings support the hypothesis that CPLD38 impacts the stability of the cytochrome b6f complex and possibly plays a role in balancing redox inputs to the quinone pool from photosynthesis and chlororespiration.
doi:10.1074/jbc.M112.427476
PMCID: PMC3591612  PMID: 23303190
Algae; Chlamydomonas; Chloroplast; Electron Transport; Genomics; Photosynthesis; Plant Physiology; Comparative Genomics; Cytochrome b6f Complex; Chlororespiration
7.  Genome, Functional Gene Annotation, and Nuclear Transformation of the Heterokont Oleaginous Alga Nannochloropsis oceanica CCMP1779 
PLoS Genetics  2012;8(11):e1003064.
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica–specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Author Summary
Algae are a highly diverse group of organisms that have become the focus of renewed interest due to their potential for producing biofuel feedstocks, nutraceuticals, and biomaterials. Their high photosynthetic yields and ability to grow in areas unsuitable for agriculture provide a potential sustainable alternative to using traditional agricultural crops for biofuels. Because none of the algae currently in use have a history of domestication, and bioengineering of algae is still in its infancy, there is a need to develop algal strains adapted to cultivation for industrial large-scale production of desired compounds. Model organisms ranging from mice to baker's yeast have been instrumental in providing insights into fundamental biological structures and functions. The algal field needs versatile models to develop a fundamental understanding of photosynthetic production of biomass and valuable compounds in unicellular, marine, oleaginous algal species. To contribute to the development of such an algal model system for basic discovery, we sequenced the genome and two sets of transcriptomes of N. oceanica CCMP1779, assembled the genomic sequence, identified putative genes, and began to interpret the function of selected genes. This species was chosen because it is readily transformable with foreign DNA and grows well in culture.
doi:10.1371/journal.pgen.1003064
PMCID: PMC3499364  PMID: 23166516
8.  Intragenic Enhancers and Suppressors of Phytoene Desaturase Mutations in Chlamydomonas reinhardtii 
PLoS ONE  2012;7(8):e42196.
Photosynthetic organisms synthesize carotenoids for harvesting light energy, photoprotection, and maintaining the structure and function of photosynthetic membranes. A light-sensitive, phytoene-accumulating mutant, pds1-1, was isolated in Chlamydomonas reinhardtii and found to be genetically linked to the phytoene desaturase (PDS) gene. PDS catalyzes the second step in carotenoid biosynthesis—the conversion of phytoene to ζ-carotene. Decreased accumulation of downstream colored carotenoids suggested that the pds1-1 mutant is leaky for PDS activity. A screen for enhancers of the pds1-1 mutation yielded the pds1-2 allele, which completely lacks PDS activity. A second independent null mutant (pds1-3) was identified using DNA insertional mutagenesis. Both null mutants accumulate only phytoene and no other carotenoids. All three phytoene-accumulating mutants exhibited slower growth rates and reduced plating efficiency compared to wild-type cells and white phytoene synthase mutants. Insight into amino acid residues important for PDS activity was obtained through the characterization of intragenic suppressors of pds1-2. The suppressor mutants fell into three classes: revertants of the pds1-1 point mutation, mutations that changed PDS amino acid residue Pro64 to Phe, and mutations that converted PDS residue Lys90 to Met. Characterization of pds1-2 intragenic suppressors coupled with computational structure prediction of PDS suggest that amino acids at positions 90 and 143 are in close contact in the active PDS enzyme and have important roles in its structural stability and/or activity.
doi:10.1371/journal.pone.0042196
PMCID: PMC3419514  PMID: 22912689
9.  Analysis of LhcSR3, a Protein Essential for Feedback De-Excitation in the Green Alga Chlamydomonas reinhardtii 
PLoS Biology  2011;9(1):e1000577.
To prevent photodamage by excess light, plants use different proteins to sense pH changes and to dissipate excited energy states. In green microalgae, however, the LhcSR3 gene product is able to perform both pH sensing and energy quenching functions.
In photosynthetic organisms, feedback dissipation of excess absorbed light energy balances harvesting of light with metabolic energy consumption. This mechanism prevents photodamage caused by reactive oxygen species produced by the reaction of chlorophyll (Chl) triplet states with O2. Plants have been found to perform the heat dissipation in specific proteins, binding Chls and carotenoids (Cars), that belong to the Lhc family, while triggering of the process is performed by the PsbS subunit, needed for lumenal pH detection. PsbS is not found in algae, suggesting important differences in energy-dependent quenching (qE) machinery. Consistent with this suggestion, a different Lhc-like gene product, called LhcSR3 (formerly known as LI818) has been found to be essential for qE in Chlamydomonas reinhardtii. In this work, we report the production of two recombinant LhcSR isoforms from C. reinhardtii and their biochemical and spectroscopic characterization. We found the following: (i) LhcSR isoforms are Chl a/b– and xanthophyll-binding proteins, contrary to higher plant PsbS; (ii) the LhcSR3 isoform, accumulating in high light, is a strong quencher of Chl excited states, exhibiting a very fast fluorescence decay, with lifetimes below 100 ps, capable of dissipating excitation energy from neighbor antenna proteins; (iii) the LhcSR3 isoform is highly active in the transient formation of Car radical cation, a species proposed to act as a quencher in the heat dissipation process. Remarkably, the radical cation signal is detected at wavelengths corresponding to the Car lutein, rather than to zeaxanthin, implying that the latter, predominant in plants, is not essential; (iv) LhcSR3 is responsive to low pH, the trigger of non-photochemical quenching, since it binds the non-photochemical quenching inhibitor dicyclohexylcarbodiimide, and increases its energy dissipation properties upon acidification. This is the first report of an isolated Lhc protein constitutively active in energy dissipation in its purified form, opening the way to detailed molecular analysis. Owing to its protonatable residues and constitutive excitation energy dissipation, this protein appears to merge both pH-sensing and energy-quenching functions, accomplished respectively by PsbS and monomeric Lhcb proteins in plants.
Author Summary
Reactive oxygen species are formed during photosynthesis, particularly when electron transport is saturated in high light. The process of non-photochemical quenching (NPQ) helps protect plants against excess light by dissipating the excited states of chlorophyll into heat. By doing so, it prevents the formation of triplet excites that otherwise would react with molecular oxygen to form singlet oxygen, a damaging reactive oxygen species. In plants, NPQ is triggered by the PsbS protein, which senses pH changes caused by excess light and consequently triggers energy-quenching functions in other proteins. The green microalga C. reinhardtii lacks the PsbS proteins, and NPQ depends on the LhcSR3 protein. In this study, we show that, unlike PsbS, LhcSR3 not only binds pigments but is also a strong quencher for chlorophyll excited states. LhcSR3 carries protonatable residues that enable it to sense pH change. Its quenching activity is further enhanced by low pH, suggesting that this algal protein merges the functions of pH sensor and of excited state quencher into a single gene product.
doi:10.1371/journal.pbio.1000577
PMCID: PMC3022525  PMID: 21267060
10.  Characterization of singlet oxygen-accumulating mutants isolated in a screen for altered oxidative stress response in Chlamydomonas reinhardtii 
BMC Plant Biology  2010;10:279.
Background
When photosynthetic organisms are exposed to harsh environmental conditions such as high light intensities or cold stress, the production of reactive oxygen species like singlet oxygen is stimulated in the chloroplast. In Chlamydomonas reinhardtii singlet oxygen was shown to act as a specific signal inducing the expression of the nuclear glutathione peroxidase gene GPXH/GPX5 during high light stress, but little is known about the cellular mechanisms involved in this response. To investigate components affecting singlet oxygen signaling in C. reinhardtii, a mutant screen was performed.
Results
Mutants with altered GPXH response were isolated from UV-mutagenized cells containing a GPXH-arylsulfatase reporter gene construct. Out of 5500 clones tested, no mutant deficient in GPXH induction was isolated, whereas several clones showed constitutive high GPXH expression under normal light conditions. Many of these GPXH overexpressor (gox) mutants exhibited higher resistance to oxidative stress conditions whereas others were sensitive to high light intensities. Interestingly, most gox mutants produced increased singlet oxygen levels correlating with high GPXH expression. Furthermore, different patterns of altered photoprotective parameters like non-photochemical quenching, carotenoid contents and α-tocopherol levels were detected in the various gox mutants.
Conclusions
Screening for mutants with altered GPXH expression resulted in the isolation of many gox mutants with increased singlet oxygen production, showing the relevance of controlling the production of this ROS in photosynthetic organisms. Phenotypic characterization of these gox mutants indicated that the mutations might lead to either stimulated triplet chlorophyll and singlet oxygen formation or reduced detoxification of singlet oxygen in the chloroplast. Furthermore, changes in multiple protection mechanisms might be responsible for high singlet oxygen formation and GPXH expression, which could either result from mutations in multiple loci or in a single gene encoding for a global regulator of cellular photoprotection mechanisms.
doi:10.1186/1471-2229-10-279
PMCID: PMC3022906  PMID: 21167020
11.  Arabidopsis thaliana PGR7 Encodes a Conserved Chloroplast Protein That Is Necessary for Efficient Photosynthetic Electron Transport 
PLoS ONE  2010;5(7):e11688.
A significant fraction of a plant's nuclear genome encodes chloroplast-targeted proteins, many of which are devoted to the assembly and function of the photosynthetic apparatus. Using digital video imaging of chlorophyll fluorescence, we isolated proton gradient regulation 7 (pgr7) as an Arabidopsis thaliana mutant with low nonphotochemical quenching of chlorophyll fluorescence (NPQ). In pgr7, the xanthophyll cycle and the PSBS gene product, previously identified NPQ factors, were still functional, but the efficiency of photosynthetic electron transport was lower than in the wild type. The pgr7 mutant was also smaller in size and had lower chlorophyll content than the wild type in optimal growth conditions. Positional cloning located the pgr7 mutation in the At3g21200 (PGR7) gene, which was predicted to encode a chloroplast protein of unknown function. Chloroplast targeting of PGR7 was confirmed by transient expression of a GFP fusion protein and by stable expression and subcellular localization of an epitope-tagged version of PGR7. Bioinformatic analyses revealed that the PGR7 protein has two domains that are conserved in plants, algae, and bacteria, and the N-terminal domain is predicted to bind a cofactor such as FMN. Thus, we identified PGR7 as a novel, conserved nuclear gene that is necessary for efficient photosynthetic electron transport in chloroplasts of Arabidopsis.
doi:10.1371/journal.pone.0011688
PMCID: PMC2908147  PMID: 20657737
12.  Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis 
Photosynthesis Research  2010;105(1):39-49.
To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO2-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool.
Electronic supplementary material
The online version of this article (doi:10.1007/s11120-010-9562-8) contains supplementary material, which is available to authorized users.
doi:10.1007/s11120-010-9562-8
PMCID: PMC2885298  PMID: 20535560
Acetate; Algae; LhcSR; Non-photochemical quenching; Respiration
13.  Phylogenomic analysis of the Chlamydomonas genome unmasks proteins potentially involved in photosynthetic function and regulation 
Photosynthesis Research  2010;106(1-2):3-17.
Chlamydomonas reinhardtii, a unicellular green alga, has been exploited as a reference organism for identifying proteins and activities associated with the photosynthetic apparatus and the functioning of chloroplasts. Recently, the full genome sequence of Chlamydomonas was generated and a set of gene models, representing all genes on the genome, was developed. Using these gene models, and gene models developed for the genomes of other organisms, a phylogenomic, comparative analysis was performed to identify proteins encoded on the Chlamydomonas genome which were likely involved in chloroplast functions (or specifically associated with the green algal lineage); this set of proteins has been designated the GreenCut. Further analyses of those GreenCut proteins with uncharacterized functions and the generation of mutant strains aberrant for these proteins are beginning to unmask new layers of functionality/regulation that are integrated into the workings of the photosynthetic apparatus.
doi:10.1007/s11120-010-9555-7
PMCID: PMC2947710  PMID: 20490922
Chlamydomonas; GreenCut; Chloroplast; Phylogenomics; Regulation
14.  Replacement of α-Tocopherol by β-Tocopherol Enhances Resistance to Photooxidative Stress in a Xanthophyll-Deficient Strain of Chlamydomonas reinhardtii▿  
Eukaryotic Cell  2009;8(11):1648-1657.
Tocopherols (vitamin E) comprise a class of lipid-soluble antioxidants synthesized only in plants, algae, and some cyanobacteria. The majority of tocopherols in photosynthetic cells is in the α form, which has the highest vitamin E activity in humans, whereas the β, γ, and δ forms normally account for a small percentage of total tocopherols. The antioxidant activities of these forms of tocopherol differ depending on the experimental system, and their relative activities in vivo are unclear. In a screen for suppressors of the xanthophyll-deficient npq1 lor1 double mutant of Chlamydomonas reinhardtii, we isolated a vte3 mutant lacking α-tocopherol but instead accumulating β-tocopherol. The vte3 mutant contains a mutation in the homolog of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase gene found in plants. The vte3 npq1 lor1 triple mutant with β-tocopherol survived better under photooxidative stress than did the npq1 lor1 mutant, but the vte3 mutant on its own did not have an obvious phenotype. Following transfer from low light to high light, the triple mutant showed a higher efficiency of photosystem II, a higher level of cell viability, and a lower level of lipid peroxide, a marker for oxidative stress, than did the npq1 lor1 mutant. After high-light transfer, the level of the photosystem II reaction center protein, D1, was also higher in the vte3 npq1 lor1 mutant, but the rate of D1 photodamage was not significantly different from that of the npq1 lor1 mutant. Taken together, these results suggest that the replacement of α-tocopherol by β-tocopherol in a xanthophyll-deficient strain of Chlamydomonas reinhardtii contributes to better survival under conditions of photooxidative stress.
doi:10.1128/EC.00124-09
PMCID: PMC2772410  PMID: 19717743
15.  Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX 
Plant Molecular Biology  2010;72(6):643-658.
Two Chlamydomonas reinhardtii mutants defective in CHLM encoding Mg-protoporphyrin IX methyltransferase (MgPMT) were identified. The mutants, one with a missense mutation (chlM-1) and a second mutant with a splicing defect (chlM-2), do not accumulate chlorophyll, are yellow in the dark and dim light, and their growth is inhibited at higher light intensities. They accumulate Mg-protoporphyrin IX (MgProto), the substrate of MgPMT and this may be the cause for their light sensitivity. In the dark, both mutants showed a drastic reduction in the amounts of core proteins of photosystems I and II and light-harvesting chlorophyll a/b-binding proteins. However, LHC mRNAs accumulated above wild-type levels. The accumulation of the transcripts of the LHC and other genes that were expressed at higher levels in the mutants during dark incubation was attenuated in the initial phase of light exposure. No regulatory effects of the constitutively 7- to 18-fold increased MgProto levels on gene expression were detected, supporting previous results in which MgProto and heme in Chlamydomonas were assigned roles as second messengers only in the transient activation of genes by light.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-010-9604-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s11103-010-9604-9
PMCID: PMC2837180  PMID: 20127142
Chlamydomonas; Mg protoporphyrin IX methyltransferase mutants; MgProtoporphyrin IX accumulation; Gene expression; Signaling
16.  Mutations in Arabidopsis YCF20-like genes affect thermal dissipation of excess absorbed light energy 
Planta  2010;231(4):923-937.
Plants dissipate excess absorbed light energy as heat to protect themselves from photo-oxidative stress. The Arabidopsis thaliananpq6 mutant affected in thermal dissipation was identified by its partial defect in the induction of nonphotochemical quenching of chlorophyll fluorescence (NPQ) by excess light. Positional cloning revealed that npq6 contains a frameshift mutation caused by a single base-pair deletion in the At5g43050 gene, which encodes a member of the hypothetical chloroplast open reading frame 20 (YCF20) family of proteins with unknown function(s). The YCF20 protein family is mostly conserved in oxygenic photosynthetic organisms including cyanobacteria, eukaryotic algae, and plants. Amino acid sequence comparison identified two other genes in Arabidopsis that encode similar proteins to NPQ6: At1g65420 and At3g56830. These three Arabidopsis proteins have functional chloroplast-targeting transit peptides. Using reverse genetics, a mutant with a T-DNA insertion within the At1g65420 gene was identified and shown to exhibit a low NPQ phenotype similar to that of npq6; therefore, At1g65420 was named NPQ7. In contrast, a knockdown mutant in the At3g56830 gene with lower transcript levels showed wild-type levels of NPQ. The npq6 npq7 double mutant had an additive NPQ defect, indicating that the YCF20 family members in Arabidopsis have overlapping functions affecting thermal dissipation.
Electronic supplementary material
The online version of this article (doi:10.1007/s00425-010-1098-9) contains supplementary material, which is available to authorized users.
doi:10.1007/s00425-010-1098-9
PMCID: PMC2820688  PMID: 20087601
Arabidopsis thaliana; Chlorophyll fluorescence; Nonphotochemical quenching; NPQ6; NPQ7; Photosynthesis; YCF20
17.  Acclimation to Singlet Oxygen Stress in Chlamydomonas reinhardtii▿  
Eukaryotic Cell  2007;6(6):919-930.
In an aerobic environment, responding to oxidative cues is critical for physiological adaptation (acclimation) to changing environmental conditions. The unicellular alga Chlamydomonas reinhardtii was tested for the ability to acclimate to specific forms of oxidative stress. Acclimation was defined as the ability of a sublethal pretreatment with a reactive oxygen species to activate defense responses that subsequently enhance survival of that stress. C. reinhardtii exhibited a strong acclimation response to rose bengal, a photosensitizing dye that produces singlet oxygen. This acclimation was dependent upon photosensitization and occurred only when pretreatment was administered in the light. Shifting cells from low light to high light also enhanced resistance to singlet oxygen, suggesting an overlap in high-light and singlet oxygen response pathways. Microarray analysis of RNA levels indicated that a relatively small number of genes respond to sublethal levels of singlet oxygen. Constitutive overexpression of either of two such genes, a glutathione peroxidase gene and a glutathione S-transferase gene, was sufficient to enhance singlet oxygen resistance. Escherichia coli and Saccharomyces cerevisiae exhibit well-defined responses to reactive oxygen but did not acclimate to singlet oxygen, possibly reflecting the relative importance of singlet oxygen stress for photosynthetic organisms.
doi:10.1128/EC.00207-06
PMCID: PMC1951523  PMID: 17435007
18.  Effects of altered α- and β-branch carotenoid biosynthesis on photoprotection and whole-plant acclimation of Arabidopsis to photo-oxidative stress 
Plant, Cell & Environment  2013;36(2):438-453.
Functions of α- and β-branch carotenoids in whole-plant acclimation to photo-oxidative stress were studied in Arabidopsis thaliana wild-type (wt) and carotenoid mutants, lutein deficient (lut2, lut5), non-photochemical quenching1 (npq1) and suppressor of zeaxanthin-less1 (szl1) npq1 double mutant. Photo-oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α- to β-branch carotenoid composition (α/β-ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β-branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β-ratios (lut5, szl1npq1) or without xanthophyll-cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β-ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β-ratios. The results highlight the importance of proper regulation of the α- and β-branch carotenoid pathways for whole-plant acclimation, not only leaf photoprotection, under photo-oxidative stress.
doi:10.1111/j.1365-3040.2012.02586.x
PMCID: PMC3640260  PMID: 22860767
Arabidopsis thaliana; carotene; leaf growth; lutein; non-photochemical quenching; root growth; sunflecks; xanthophyll cycle

Results 1-18 (18)