Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Physicochemical Characteristics and Composition of Three Morphotypes of Cyperus esculentus Tubers and Tuber Oils 
Tuber characteristics and nutrient composition of three morphotypes of Cyperus esculentus tubers and tuber oils were determined. The mean value for length and width of the tuber and one thousand dried tuber weights ranged from 0.98 to 1.31 cm, 0.90 to 1.19 cm, and 598 to 1044 g, respectively. Tubers displayed high level of starch (30.54–33.21 g 100 g−1), lipid (24.91–28.94 g 100 g−1), and sucrose (17.98–20.39 g 100 g−1). The yellow tubers had significantly higher content in lipid compared to black ones. Levels of ascorbic acid, tocopherol, and β-carotene of the three morphotypes differed significantly. Yellow ones (morphotypes 1 and 2) were the richest in tocopherol and the poorest in β-carotene. Saturated fatty acid content of morphotype 2 was significantly lower than that of morphotypes 1 and 3. Morphotype 3 had the significantly lowest PUFA content compared to morphotypes 1 and 2. Morphotype 1 was found to be richer in Ca, Cu, and Mn contents. Al, Mg, P, S, and Si were most abundant in morphotype 2. Morphotype 3 had the highest content of Cl, K, and Zn.
PMCID: PMC4619938  PMID: 26539305
2.  The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome 
Annals of Botany  2013;112(3):545-559.
Background and Aims
Peanut (Arachis hypogaea) is an allotetraploid (AABB-type genome) of recent origin, with a genome of about 2·8 Gb and a high repetitive content. This study reports an analysis of the repetitive component of the peanut A genome using bacterial artificial chromosome (BAC) clones from A. duranensis, the most probable A genome donor, and the probable consequences of the activity of these elements since the divergence of the peanut A and B genomes.
The repetitive content of the A genome was analysed by using A. duranensis BAC clones as probes for fluorescence in situ hybridization (BAC-FISH), and by sequencing and characterization of 12 genomic regions. For the analysis of the evolutionary dynamics, two A genome regions are compared with their B genome homeologues.
Key Results
BAC-FISH using 27 A. duranensis BAC clones as probes gave dispersed and repetitive DNA characteristic signals, predominantly in interstitial regions of the peanut A chromosomes. The sequences of 14 BAC clones showed complete and truncated copies of ten abundant long terminal repeat (LTR) retrotransposons, characterized here. Almost all dateable transposition events occurred <3·5 million years ago, the estimated date of the divergence of A and B genomes. The most abundant retrotransposon is Feral, apparently parasitic on the retrotransposon FIDEL, followed by Pipa, also non-autonomous and probably parasitic on a retrotransposon we named Pipoka. The comparison of the A and B genome homeologous regions showed conserved segments of high sequence identity, punctuated by predominantly indel regions without significant similarity.
A substantial proportion of the highly repetitive component of the peanut A genome appears to be accounted for by relatively few LTR retrotransposons and their truncated copies or solo LTRs. The most abundant of the retrotransposons are non-autonomous. The activity of these retrotransposons has been a very significant driver of genome evolution since the evolutionary divergence of the A and B genomes.
PMCID: PMC3718217  PMID: 23828319
Arachis hypogaea; A. duranensis; peanut; groundnut; BAC-FISH; BAC sequencing; retrotransposons; genome evolution; phylogeny; homeology
3.  FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut 
Chromosome Research  2010;18(2):227-246.
In this paper, we describe a Ty3-gypsy retrotransposon from allotetraploid peanut (Arachis hypogaea) and its putative diploid ancestors Arachis duranensis (A-genome) and Arachis ipaënsis (B-genome). The consensus sequence is 11,223 bp. The element, named FIDEL (Fairly long Inter-Dispersed Euchromatic LTR retrotransposon), is more frequent in the A- than in the B-genome, with copy numbers of about 3,000 (±950, A. duranensis), 820 (±480, A. ipaënsis), and 3,900 (±1,500, A. hypogaea) per haploid genome. Phylogenetic analysis of reverse transcriptase sequences showed distinct evolution of FIDEL in the ancestor species. Fluorescent in situ hybridization revealed disperse distribution in euchromatin and absence from centromeres, telomeric regions, and the nucleolar organizer region. Using paired sequences from bacterial artificial chromosomes, we showed that elements appear less likely to insert near conserved ancestral genes than near the fast evolving disease resistance gene homologs. Within the Ty3-gypsy elements, FIDEL is most closely related with the Athila/Calypso group of retrovirus-like retrotransposons. Putative transmembrane domains were identified, supporting the presence of a vestigial envelope gene. The results emphasize the importance of FIDEL in the evolution and divergence of different Arachis genomes and also may serve as an example of the role of retrotransposons in the evolution of legume genomes in general.
Electronic supplementary material
The online version of this article (doi:10.1007/s10577-009-9109-z) contains supplementary material, which is available to authorized users.
PMCID: PMC2844528  PMID: 20127167
peanut; Arachis; retrotransposon; retrovirus-like; fluorescent in situ hybridization
4.  Identification of candidate genome regions controlling disease resistance in Arachis 
BMC Plant Biology  2009;9:112.
Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.
In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.
Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.
PMCID: PMC2739205  PMID: 19698131

Results 1-4 (4)