PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Phylogenetic relationships in genus Arachis based on ITS and 5.8S rDNA sequences 
BMC Plant Biology  2010;10:255.
Background
The genus Arachis comprises 80 species and it is subdivided into nine taxonomic sections (Arachis, Caulorrhizae, Erectoides, Extranervosae, Heteranthae, Procumbentes, Rhizomatosae, Trierectoides, and Triseminatae). This genus is naturally confined to South America and most of its species are native to Brazil. In order to provide a better understanding of the evolution of the genus, we reconstructed the phylogeny of 45 species using the variation observed on nucleotide sequences in internal transcribed spacer regions (ITS1 and ITS2) and 5.8 S of nuclear ribosomal DNA.
Results
Intraspecific variation was detected, but in general it was not enough to place accessions of the same species in different clades. Our data support the view that Arachis is a monophyletic group and suggested Heteranthae as the most primitive section of genus Arachis. The results confirmed the circumscriptions of some sections (Caulorrhizae, Extranervosae), but raised questions about others. Sections Erectoides, Trierectoides and Procumbentes were not well defined, while sections Arachis and Rhizomatosae seem to include species that could be moved to different sections. The division of section Arachis into A and B genome species was also observed in the phylogenetic tree and these two groups of species may not have a monophyletic origin. The 2n = 2x = 18 species of section Arachis (A. praecox, A. palustris and A. decora) were all placed in the same clade, indicating they are closely related to each other, and their genomes are more related to B genome than to the A genome. Data also allowed insights on the origin of tetraploid A. glabrata, suggesting rhizome appeared twice within the genus and raising questions about the placement of that species in section Rhizomatosae.
Conclusion
The main clades established in this study in general agreed with many other studies that have used other types of evidences and sets of species, being some of them included in our study and some not. Thus, the relationships established can be a useful framework for future systematic reviews of genus Arachis and for the selection of species to pre-breeding programs.
doi:10.1186/1471-2229-10-255
PMCID: PMC3095334  PMID: 21092103
2.  Paleodistributions and Comparative Molecular Phylogeography of Leafcutter Ants (Atta spp.) Provide New Insight into the Origins of Amazonian Diversity 
PLoS ONE  2008;3(7):e2738.
The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum (LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently (Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring populations in two of the three species examined. The available data therefore suggest that either marine incursions in the Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for future research into the area.
doi:10.1371/journal.pone.0002738
PMCID: PMC2447876  PMID: 18648512

Results 1-2 (2)