PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-17 (17)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Transcriptome and Allele Specificity Associated with a 3BL Locus for Fusarium Crown Rot Resistance in Bread Wheat 
PLoS ONE  2014;9(11):e113309.
Fusarium pathogens cause two major diseases in cereals, Fusarium crown rot (FCR) and head blight (FHB). A large-effect locus conferring resistance to FCR disease was previously located to chromosome arm 3BL (designated as Qcrs-3B) and several independent sets of near isogenic lines (NILs) have been developed for this locus. In this study, five sets of the NILs were used to examine transcriptional changes associated with the Qcrs-3B locus and to identify genes linked to the resistance locus as a step towards the isolation of the causative gene(s). Of the differentially expressed genes (DEGs) detected between the NILs, 12.7% was located on the single chromosome 3B. Of the expressed genes containing SNP (SNP-EGs) detected, 23.5% was mapped to this chromosome. Several of the DEGs and SNP-EGs are known to be involved in host-pathogen interactions, and a large number of the DEGs were among those detected for FHB in previous studies. Of the DEGs detected, 22 were mapped in the Qcrs-3B interval and they included eight which were detected in the resistant isolines only. The enrichment of DEG, and not necessarily those containing SNPs between the resistant and susceptible isolines, around the Qcrs-3B locus is suggestive of local regulation of this region by the resistance allele. Functions for 13 of these DEGs are known. Of the SNP-EGs, 28 were mapped in the Qcrs-3B interval and biological functions for 16 of them are known. These results provide insights into responses regulated by the 3BL locus and identify a tractable number of target genes for fine mapping and functional testing to identify the causative gene(s) at this QTL.
doi:10.1371/journal.pone.0113309
PMCID: PMC4236173  PMID: 25405461
2.  The non-gibberellic acid-responsive semi-dwarfing gene uzu affects Fusarium crown rot resistance in barley 
BMC Plant Biology  2014;14:22.
Background
Studies in Arabidopsis show that DELLA genes may differentially affect responses to biotrophic and necrophic pathogens. A recent report based on the study of DELLA-producing reduced height (Rht) genes in wheat and barley also hypothesized that DELLA genes likely increased susceptibility to necrotrophs but increased resistance to biotrophs.
Results
Effects of uzu, a non-GA (gibberellic acid)-responsive semi-dwarfing gene, on Fusarium crown rot (FCR) resistance in barley were investigated. Fifteen pairs of near isogenic lines for this gene were generated and assessed under two different temperature regimes. Similar to its impacts on plant height, the semi-dwarfing gene uzu also showed larger effects on FCR severity in the high temperature regime when compared with that in the low temperature regime.
Conclusions
Results from this study add to the growing evidence showing that the effects of plant height on Fusarium resistances are unlikely related to DELLA genes but due to direct or indirect effects of height difference per se. The interaction between these two characteristics highlights the importance of understanding relationships between resistance and other traits of agronomic importance as the value of a resistance gene could be compromised if it dramatically affects plant development and morphology.
doi:10.1186/1471-2229-14-22
PMCID: PMC3898025  PMID: 24418007
Plant height; Fusarium crown rot; uzu gene; Near isogenic lines; DELLA proteins
3.  Genomic Analysis of Xanthomonas translucens Pathogenic on Wheat and Barley Reveals Cross-Kingdom Gene Transfer Events and Diverse Protein Delivery Systems 
PLoS ONE  2014;9(1):e84995.
In comparison to dicot-infecting bacteria, only limited numbers of genome sequences are available for monocot-infecting and in particular cereal-infecting bacteria. Herein we report the characterisation and genome sequence of Xanthomonas translucens isolate DAR61454 pathogenic on wheat and barley. Based on phylogenetic analysis of the ATP synthase beta subunit (atpD) gene, DAR61454 is most closely related to other X. translucens strains and the sugarcane- and banana- infecting Xanthomonas strains, but shares a type III secretion system (T3SS) with X. translucens pv. graminis and more distantly related xanthomonads. Assays with an adenylate cyclase reporter protein demonstrate that DAR61454's T3SS is functional in delivering proteins to wheat cells. X. translucens DAR61454 also encodes two type VI secretion systems with one most closely related to those found in some strains of the rice infecting strain X. oryzae pv. oryzae but not other xanthomonads. Comparative analysis of 18 different Xanthomonas isolates revealed 84 proteins unique to cereal (i.e. rice) infecting isolates and the wheat/barley infecting DAR61454. Genes encoding 60 of these proteins are found in gene clusters in the X. translucens DAR61454 genome, suggesting cereal-specific pathogenicity islands. However, none of the cereal pathogen specific proteins were homologous to known Xanthomonas spp. effectors. Comparative analysis outside of the bacterial kingdom revealed a nucleoside triphosphate pyrophosphohydrolase encoding gene in DAR61454 also present in other bacteria as well as a number of pathogenic Fusarium species, suggesting that this gene may have been transmitted horizontally from bacteria to the Fusarium lineage of pathogenic fungi. This example further highlights the importance of horizontal gene acquisition from bacteria in the evolution of fungi.
doi:10.1371/journal.pone.0084995
PMCID: PMC3887016  PMID: 24416331
4.  Diversifying selection in the wheat stem rust fungus acts predominantly on pathogen-associated gene families and reveals candidate effectors 
Plant pathogens cause severe losses to crop plants and threaten global food production. One striking example is the wheat stem rust fungus, Puccinia graminis f. sp. tritici, which can rapidly evolve new virulent pathotypes in response to resistant host lines. Like several other filamentous fungal and oomycete plant pathogens, its genome features expanded gene families that have been implicated in host-pathogen interactions, possibly encoding effector proteins that interact directly with target host defense proteins. Previous efforts to understand virulence largely relied on the prediction of secreted, small and cysteine-rich proteins as candidate effectors and thus delivered an overwhelming number of candidates. Here, we implement an alternative analysis strategy that uses the signal of adaptive evolution as a line of evidence for effector function, combined with comparative information and expression data. We demonstrate that in planta up-regulated genes that are rapidly evolving are found almost exclusively in pathogen-associated gene families, affirming the impact of host-pathogen co-evolution on genome structure and the adaptive diversification of specialized gene families. In particular, we predict 42 effector candidates that are conserved only across pathogens, induced during infection and rapidly evolving. One of our top candidates has recently been shown to induce genotype-specific hypersensitive cell death in wheat. This shows that comparative genomics incorporating the evolutionary signal of adaptation is powerful for predicting effector candidates for laboratory verification. Our system can be applied to a wide range of pathogens and will give insight into host-pathogen dynamics, ultimately leading to progress in strategies for disease control.
doi:10.3389/fpls.2014.00372
PMCID: PMC4150398  PMID: 25225496
rust; effector; adaptation; avirulence; selection; Puccinia graminis; fungal pathogens
5.  A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi 
BMC Genomics  2013;14:807.
Background
Fungal pathogens cause devastating losses in economically important cereal crops by utilising pathogen proteins to infect host plants. Secreted pathogen proteins are referred to as effectors and have thus far been identified by selecting small, cysteine-rich peptides from the secretome despite increasing evidence that not all effectors share these attributes.
Results
We take advantage of the availability of sequenced fungal genomes and present an unbiased method for finding putative pathogen proteins and secreted effectors in a query genome via comparative hidden Markov model analyses followed by unsupervised protein clustering. Our method returns experimentally validated fungal effectors in Stagonospora nodorum and Fusarium oxysporum as well as the N-terminal Y/F/WxC-motif from the barley powdery mildew pathogen. Application to the cereal pathogen Fusarium graminearum reveals a secreted phosphorylcholine phosphatase that is characteristic of hemibiotrophic and necrotrophic cereal pathogens and shares an ancient selection process with bacterial plant pathogens. Three F. graminearum protein clusters are found with an enriched secretion signal. One of these putative effector clusters contains proteins that share a [SG]-P-C-[KR]-P sequence motif in the N-terminal and show features not commonly associated with fungal effectors. This motif is conserved in secreted pathogenic Fusarium proteins and a prime candidate for functional testing.
Conclusions
Our pipeline has successfully uncovered conservation patterns, putative effectors and motifs of fungal pathogens that would have been overlooked by existing approaches that identify effectors as small, secreted, cysteine-rich peptides. It can be applied to any pathogenic proteome data, such as microbial pathogen data of plants and other organisms.
doi:10.1186/1471-2164-14-807
PMCID: PMC3914424  PMID: 24252298
Fungal pathogens; Comparative genomics; Effectors; Fusarium graminearum; Cereal host; Hidden Markov model; Protein structure
6.  Genome Sequences of Six Wheat-Infecting Fusarium Species Isolates 
Genome Announcements  2013;1(5):e00670-13.
Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported.
doi:10.1128/genomeA.00670-13
PMCID: PMC3764410  PMID: 24009115
7.  Ethylene Response Factor 6 Is a Regulator of Reactive Oxygen Species Signaling in Arabidopsis 
PLoS ONE  2013;8(8):e70289.
Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses.
doi:10.1371/journal.pone.0070289
PMCID: PMC3734174  PMID: 23940555
8.  Lateral organ boundaries domain transcription factors 
Plant Signaling & Behavior  2012;7(12):1702-1704.
Over the last two decades, several transcription factor gene families have been identified with some of them characterized in detail for their roles on transcriptional regulation of plant defense responses against pest or pathogen attack. We have recently added another transcription factor gene family to this list through the characterization of the LATERAL ORGAN BOUNDARIES (LOB) DOMAIN (LBD)-CONTAINING PROTEIN20 (LBD20). We showed LBD20 acts as a repressor of a subset of jasmonate mediated defenses and in susceptibility to the root-infecting fungal pathogen Fusarium oxysporum. However, possible roles for other members of this gene family in plant defense are currently unknown. Here we searched publically available microarray expression data and provide an overview of the expression patterns of selected members of the LBD gene family for their response to other fungal pathogens and soil nematodes. Distinct expression patterns of the LBD genes suggest that certain members of this gene family have previously undescribed roles in plant defense.
doi:10.4161/psb.22097
PMCID: PMC3578913  PMID: 23073022
LBD; jasmonate; transcription; defense; biotic stress; Fusarium oxysporum
9.  Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops 
Genome Announcements  2013;1(3):e00209-13.
Compared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis.
doi:10.1128/genomeA.00209-13
PMCID: PMC3650443  PMID: 23661484
10.  Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities 
Microbial biotechnology  2013;6(3):212-222.
With expansion of our understanding of pathogen effector strategies and the multiplicity of their host targets, it is becoming evident that novel approaches to engineering broad-spectrum resistance need to be deployed. The increasing availability of high temporal gene expression data of a range of plant–microbe interactions enables the judicious choices of promoters to fine-tune timing and magnitude of expression under specified stress conditions. We can therefore contemplate engineering a range of transgenic lines designed to interfere with pathogen virulence strategies that target plant hormone signalling or deploy specific disease resistance genes. An advantage of such an approach is that hormonal signalling is generic so if this strategy is effective, it can be easily implemented in a range of crop species. Additionally, multiple re-wired lines can be crossed to develop more effective responses to pathogens.
doi:10.1111/1751-7915.12017
PMCID: PMC3815916  PMID: 23279915
11.  Comparative Pathogenomics Reveals Horizontally Acquired Novel Virulence Genes in Fungi Infecting Cereal Hosts 
PLoS Pathogens  2012;8(9):e1002952.
Comparative analyses of pathogen genomes provide new insights into how pathogens have evolved common and divergent virulence strategies to invade related plant species. Fusarium crown and root rots are important diseases of wheat and barley world-wide. In Australia, these diseases are primarily caused by the fungal pathogen Fusarium pseudograminearum. Comparative genomic analyses showed that the F. pseudograminearum genome encodes proteins that are present in other fungal pathogens of cereals but absent in non-cereal pathogens. In some cases, these cereal pathogen specific genes were also found in bacteria associated with plants. Phylogenetic analysis of selected F. pseudograminearum genes supported the hypothesis of horizontal gene transfer into diverse cereal pathogens. Two horizontally acquired genes with no previously known role in fungal pathogenesis were studied functionally via gene knockout methods and shown to significantly affect virulence of F. pseudograminearum on the cereal hosts wheat and barley. Our results indicate using comparative genomics to identify genes specific to pathogens of related hosts reveals novel virulence genes and illustrates the importance of horizontal gene transfer in the evolution of plant infecting fungal pathogens.
Author Summary
Cereals are our most important staple crops and are subject to attack from a diverse range of fungal pathogens. A major goal of molecular plant pathology research is to understand how pathogens infect plants to allow the development of durable plant protection measures. Comparing the genomes of different pathogens of cereals and contrasting them to non-cereal pathogen genomes allows for the identification of genes important for pathogenicity toward these important crops. In this study, we sequenced the genome of the wheat and barley pathogen F. pseudograminearum responsible for crown and root-rot diseases, and compared it to those from a broad range of previously sequenced fungal genomes from cereal and non-cereal pathogens. These analyses revealed that the F. pseudograminearum genome contains a number of genes only found in fungi pathogenic on cereals. Some of these genes appear to have been horizontally acquired from other fungi and, in some cases, from plant associated bacteria. The functions of two of these genes were tested by creating strains that lacked the genes. Both genes had important roles in causing disease on cereals. This work has important implications for our understanding of pathogen specialization during the evolution of fungal pathogens infecting cereal crops.
doi:10.1371/journal.ppat.1002952
PMCID: PMC3460631  PMID: 23028337
12.  Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium 
Nature  2010;464(7287):367-373.
Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.
doi:10.1038/nature08850
PMCID: PMC3048781  PMID: 20237561
13.  Identification of drought-response genes and a study of their expression during sucrose accumulation and water deficit in sugarcane culms 
BMC Plant Biology  2011;11:12.
Background
The ability of sugarcane to accumulate high concentrations of sucrose in its culm requires adaptation to maintain cellular function under the high solute load. We have investigated the expression of 51 genes implicated in abiotic stress to determine their expression in the context of sucrose accumulation by studying mature and immature culm internodes of a high sucrose accumulating sugarcane cultivar. Using a sub-set of eight genes, expression was examined in mature internode tissues of sugarcane cultivars as well as ancestral and more widely related species with a range of sucrose contents. Expression of these genes was also analysed in internode tissue from a high sucrose cultivar undergoing water deficit stress to compare effects of sucrose accumulation and water deficit.
Results
A sub-set of stress-related genes that are potentially associated with sucrose accumulation in sugarcane culms was identified through correlation analysis, and these included genes encoding enzymes involved in amino acid metabolism, a sugar transporter and a transcription factor. Subsequent analysis of the expression of these stress-response genes in sugarcane plants that were under water deficit stress revealed a different transcriptional profile to that which correlated with sucrose accumulation. For example, genes with homology to late embryogenesis abundant-related proteins and dehydrin were strongly induced under water deficit but this did not correlate with sucrose content. The expression of genes encoding proline biosynthesis was associated with both sucrose accumulation and water deficit, but amino acid analysis indicated that proline was negatively correlated with sucrose concentration, and whilst total amino acid concentrations increased about seven-fold under water deficit, the relatively low concentration of proline suggested that it had no osmoprotectant role in sugarcane culms.
Conclusions
The results show that while there was a change in stress-related gene expression associated with sucrose accumulation, different mechanisms are responding to the stress induced by water deficit, because different genes had altered expression under water deficit.
doi:10.1186/1471-2229-11-12
PMCID: PMC3030532  PMID: 21226964
14.  Early activation of wheat polyamine biosynthesis during Fusarium head blight implicates putrescine as an inducer of trichothecene mycotoxin production 
BMC Plant Biology  2010;10:289.
Background
The fungal pathogen Fusarium graminearum causes Fusarium Head Blight (FHB) disease on wheat which can lead to trichothecene mycotoxin (e.g. deoxynivalenol, DON) contamination of grain, harmful to mammalian health. DON is produced at low levels under standard culture conditions when compared to plant infection but specific polyamines (e.g. putrescine and agmatine) and amino acids (e.g. arginine and ornithine) are potent inducers of DON by F. graminearum in axenic culture. Currently, host factors that promote mycotoxin synthesis during FHB are unknown, but plant derived polyamines could contribute to DON induction in infected heads. However, the temporal and spatial accumulation of polyamines and amino acids in relation to that of DON has not been studied.
Results
Following inoculation of susceptible wheat heads by F. graminearum, DON accumulation was detected at two days after inoculation. The accumulation of putrescine was detected as early as one day following inoculation while arginine and cadaverine were also produced at three and four days post-inoculation. Transcripts of ornithine decarboxylase (ODC) and arginine decarboxylase (ADC), two key biosynthetic enzymes for putrescine biosynthesis, were also strongly induced in heads at two days after inoculation. These results indicated that elicitation of the polyamine biosynthetic pathway is an early response to FHB. Transcripts for genes encoding enzymes acting upstream in the polyamine biosynthetic pathway as well as those of ODC and ADC, and putrescine levels were also induced in the rachis, a flower organ supporting DON production and an important route for pathogen colonisation during FHB. A survey of 24 wheat genotypes with varying responses to FHB showed putrescine induction is a general response to inoculation and no correlation was observed between the accumulation of putrescine and infection or DON accumulation.
Conclusions
The activation of the polyamine biosynthetic pathway and putrescine in infected heads prior to detectable DON accumulation is consistent with a model where the pathogen exploits the generic host stress response of polyamine synthesis as a cue for production of trichothecene mycotoxins during FHB disease. However, it is likely that this mechanism is complicated by other factors contributing to resistance and susceptibility in diverse wheat genetic backgrounds.
doi:10.1186/1471-2229-10-289
PMCID: PMC3022911  PMID: 21192794
15.  Plant mediator 
Plant Signaling & Behavior  2010;5(6):718-720.
Jasmonate (JA) signaling plays an important role in regulating both plant defense and development. We have recently reported that the PHYTOCHROME AND FLOWERING TIME1 (PFT1) gene, which encodes the MEDIATOR25 subunit of the plant Mediator complex, is a key regulator of JA regulated transcription. We showed that the pft1 mutant had attenuated expression of a wide range of JA responsive genes and altered resistance to fungal pathogens. Here we examine the position of PFT1/MED25 within the JA pathway and discuss its role in “mediating” the JA response.
PMCID: PMC3001569  PMID: 20383062
jasmonate; JAZ; mediator; transcription; defense; PFT1; Fusarium oxysporum
16.  A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat 
BMC Plant Biology  2010;10:264.
Background
Mutational inactivation of plant genes is an essential tool in gene function studies. Plants with inactivated or deleted genes may also be exploited for crop improvement if such mutations/deletions produce a desirable agronomical and/or quality phenotype. However, the use of mutational gene inactivation/deletion has been impeded in polyploid plant species by genetic redundancy, as polyploids contain multiple copies of the same genes (homoeologous genes) encoded by each of the ancestral genomes. Similar to many other crop plants, bread wheat (Triticum aestivum L.) is polyploid; specifically allohexaploid possessing three progenitor genomes designated as 'A', 'B', and 'D'. Recently modified TILLING protocols have been developed specifically for mutation detection in wheat. Whilst extremely powerful in detecting single nucleotide changes and small deletions, these methods are not suitable for detecting whole gene deletions. Therefore, high-throughput methods for screening of candidate homoeologous gene deletions are needed for application to wheat populations generated by the use of certain mutagenic agents (e.g. heavy ion irradiation) that frequently generate whole-gene deletions.
Results
To facilitate the screening for specific homoeologous gene deletions in hexaploid wheat, we have developed a TaqMan qPCR-based method that allows high-throughput detection of deletions in homoeologous copies of any gene of interest, provided that sufficient polymorphism (as little as a single nucleotide difference) amongst homoeologues exists for specific probe design. We used this method to identify deletions of individual TaPFT1 homoeologues, a wheat orthologue of the disease susceptibility and flowering regulatory gene PFT1 in Arabidopsis. This method was applied to wheat nullisomic-tetrasomic lines as well as other chromosomal deletion lines to locate the TaPFT1 gene to the long arm of chromosome 5. By screening of individual DNA samples from 4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homoeologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homoeologous deletions of three additional wheat genes putatively involved in plant disease resistance.
Conclusions
We have developed a method for automated, high-throughput screening to identify deletions of individual homoeologues of a wheat gene. This method is also potentially applicable to other polyploidy plants.
doi:10.1186/1471-2229-10-264
PMCID: PMC3017838  PMID: 21114819
17.  Hidden weapons of microbial destruction in plant genomes 
Genome Biology  2007;8(9):225.
Recent bioinformatic analyses of sequenced plant genomes reveal a previously unrecognized abundance of genes encoding antimicrobial cysteine-rich peptides, representing a formidable and dynamic defense arsenal against plant pests and pathogens.
Recent bioinformatic analyses of sequenced plant genomes reveal a previously unrecognized abundance of genes encoding antimicrobial cysteine-rich peptides, representing a formidable and dynamic defense arsenal against plant pests and pathogens.
doi:10.1186/gb-2007-8-9-225
PMCID: PMC2375012  PMID: 17903311

Results 1-17 (17)