PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Liu, xiaoyan")
1.  The Over-Expression of Two Transcription Factors, ABS5/bHLH30 and ABS7/MYB101, Leads to Upwardly Curly Leaves 
PLoS ONE  2014;9(9):e107637.
Proper leaf development is essential for plant growth and development, and leaf morphogenesis is under the control of intricate networks of genetic and environmental cues. We are interested in dissecting these regulatory circuits genetically and report here the isolation of two Arabidopsis dominant mutants, abnormal shoot5-1D (abs5-1D) and abs7-1D identified through activation tagging screens. Both abs5-1D and abs7-1D display an intriguing upwardly curly leaf phenotype. Molecular cloning showed that the elevated expression of a bHLH transcription factor ABS5/T5L1/bHLH30 or a MYB transcription factor ABS7/MYB101 is the cause for the abnormal leaf phenotypes found in abs5-1D or abs7-1D, respectively. Protoplast transient expression assays confirmed that both ABS5/T5L1 and ABS7/MYB101 are targeted to the nucleus. Interestingly, the expression domains of auxin response reporter DR5::GUS were abnormal in leaves of abs5-1D and ABS5/T5L1 over-expression lines. Moreover, cotyledon venation analysis showed that more areoles and free-ending veins are formed in abs5-1D. We found that the epidermis-specific expressions of ABS5/T5L1 or ABS7/MYB101 driven by the Arabidopsis Meristem Layer 1 promoter (PAtML1) were sufficient to recapitulate the curly leaf phenotype of abs5-1D or abs7-1D. In addition, PAtML1::ABS5 lines exhibited similar changes in DR5::GUS expression patterns as those found in 35S-driven ABS5/T5L1 over-expression lines. Our work demonstrated that enhanced expressions of two transcription factors, ABS5/T5L1 and ABS7/MYB101, are able to alter leaf lamina development and reinforce the notion that leaf epidermis plays critical roles in regulating plant organ morphogenesis.
doi:10.1371/journal.pone.0107637
PMCID: PMC4182325  PMID: 25268707
2.  The Over-Expression of an Arabidopsis B3 Transcription Factor, ABS2/NGAL1, Leads to the Loss of Flower Petals 
PLoS ONE  2012;7(11):e49861.
Transcriptional regulations are involved in many aspects of plant development and are mainly achieved through the actions of transcription factors (TF). To investigate the mechanisms of plant development, we carried out genetic screens for mutants with abnormal shoot development. Taking an activation tagging approach, we isolated a gain-of-function mutant abs2-1D (abnormal shoot 2-1D). abs2-1D showed pleiotropic growth defects at both the vegetative and reproductive developmental stages. We cloned ABS2 and it encodes a RAV sub-family of plant B3 type of transcriptional factors. Phylogenetic analysis showed that ABS2 was closely related to NGATHA (NGA) genes that are involved in flower development and was previously named NGATHA-Like 1 (NGAL1). NGAL1 was expressed mainly in the root and the filament of the stamen in flower tissues and sub-cellular localization assay revealed that NGAL1 accumulated in the nucleus. Interestingly, over-expression of NGAL1 driven by the constitutive 35S promoter led to transgenic plants with conspicuous flower defects, particularly a loss-of-petal phenotype. A loss-of-function ngal1-1 mutant did not show obvious phenotype, suggesting the existence of redundant activities and also the utility of gain-of-function genetic screens. Our results show that the over-expression of NGAL1 is capable of altering flower petal development, as well as shoot development.
doi:10.1371/journal.pone.0049861
PMCID: PMC3503873  PMID: 23185464
3.  Overexpression of a putative Arabidopsis BAHD acyltransferase causes dwarfism that can be rescued by brassinosteroid 
Journal of Experimental Botany  2012;63(16):5787-5801.
Plant growth and development are ensured through networks of complex regulatory schemes. Genetic approaches have been invaluable in dissecting these regulatory pathways. This study reports the isolation of a semi-dominant dwarf mutant designated abnormal shoot1-1 dominant (abs1-1D) through an Arabidopsis T-DNA activation tagging mutant screen. It was shown that the overexpression of a novel BAHD family acyltransferase gene, ABS1/At4g15400, was the cause of the dwarf phenotype in abs1-1D. Overexpression of ABS1 led to many phenotypic features reminiscent of brassinosteroid (BR) deficient or signalling mutants, and it was shown that exogenously applied BR could effectively rescue the dwarf phenotype of abs1-1D. Furthermore, genetic analyses indicated that abs1-1D interacted, in different ways, with the BR-deficient mutant det2-1, the constitutive BR response mutant bes1-D and the photomorphogenic mutant phyB-1. Moreover, ABS1 expression was activated by BR treatment or in a bes1-D mutant background. Genome-wide transcriptome profiling of abs1-1D revealed clear reprogramming of metabolic pathways, and it was demonstrated that BR biosynthesis genes were activated in abs1-1D and that the flavonoid biosynthesis pathway was repressed in abs1-1D, as well as in det2-1. This work provides new insights into the possible involvement of BAHD acyltransferase in the regulation of plant growth and development, and indicates a possible role of ABS1 in maintaining BR homeostasis.
doi:10.1093/jxb/ers227
PMCID: PMC3467296  PMID: 22956280
Arabidopsis shoot development; BAHD acyltransferase; brassinosteroid; de-etiolation; dwarfism; genetic interaction
4.  A var2 leaf variegation suppressor locus, SUPPRESSOR OF VARIEGATION3, encodes a putative chloroplast translation elongation factor that is important for chloroplast development in the cold 
BMC Plant Biology  2010;10:287.
Background
The Arabidopsis var2 mutant displays a unique green and white/yellow leaf variegation phenotype and lacks VAR2, a chloroplast FtsH metalloprotease. We are characterizing second-site var2 genetic suppressors as means to better understand VAR2 function and to study the regulation of chloroplast biogenesis.
Results
In this report, we show that the suppression of var2 variegation in suppressor line TAG-11 is due to the disruption of the SUPPRESSOR OF VARIEGATION3 (SVR3) gene, encoding a putative TypA-like translation elongation factor. SVR3 is targeted to the chloroplast and svr3 single mutants have uniformly pale green leaves at 22°C. Consistent with this phenotype, most chloroplast proteins and rRNA species in svr3 have close to normal accumulation profiles, with the notable exception of the Photosystem II reaction center D1 protein, which is present at greatly reduced levels. When svr3 is challenged with chilling temperature (8°C), it develops a pronounced chlorosis that is accompanied by abnormal chloroplast rRNA processing and chloroplast protein accumulation. Double mutant analysis indicates a possible synergistic interaction between svr3 and svr7, which is defective in a chloroplast pentatricopeptide repeat (PPR) protein.
Conclusions
Our findings, on one hand, reinforce the strong genetic link between VAR2 and chloroplast translation, and on the other hand, point to a critical role of SVR3, and possibly some aspects of chloroplast translation, in the response of plants to chilling stress.
doi:10.1186/1471-2229-10-287
PMCID: PMC3022910  PMID: 21187014

Results 1-4 (4)