PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  QTL Mapping in Eggplant Reveals Clusters of Yield-Related Loci and Orthology with the Tomato Genome 
PLoS ONE  2014;9(2):e89499.
In spite of its widespread cultivation and nutritional and economic importance, the eggplant (Solanum melongena L.) genome has not been extensively explored. A lack of knowledge of the patterns of inheritance of key agronomic traits has hindered the exploitation of marker technologies to accelerate its genetic improvement. An already established F2 intraspecific population of eggplant bred from the cross ‘305E40’ x ‘67/3’ was phenotyped for 20 agronomically relevant traits at two sites. Up to seven quantitative trait loci (QTL) per trait were identified and the percentage of the phenotypic variance (PV) explained per QTL ranged from 4 to 93%. Not all the QTL were detectable at both sites, but for each trait at least one major QTL (PV explained ≥10%) was identified. Although no detectable QTL x environment interaction was found, some QTL identified were location-specific. Many of the fruit-related QTL clustered within specific chromosomal regions, reflecting either linkage and/or pleiotropy. Evidence for putative tomato orthologous QTL/genes was obtained for several of the eggplant QTL. Information regarding the inheritance of key agronomic traits was obtained. Some of the QTL, along with their respective linked markers, may be useful in the context of marker-assisted breeding.
doi:10.1371/journal.pone.0089499
PMCID: PMC3931786  PMID: 24586828
2.  The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin 
PLoS ONE  2013;8(9):e73702.
A collection of 238 eggplant breeding lines, heritage varieties and selections within local landraces provenanced from Asia and the Mediterranean Basin was phenotyped with respect to key plant and fruit traits, and genotyped using 24 microsatellite loci distributed uniformly throughout the genome. STRUCTURE analysis based on the genotypic data identified two major sub-groups, which to a large extent mirrored the provenance of the entries. With the goal to identify true-breeding types, 38 of the entries were discarded on the basis of microsatellite-based residual heterozygosity, along with a further nine which were not phenotypically uniform. The remaining 191 entries were scored for a set of 19 fruit and plant traits in a replicated experimental field trial. The phenotypic data were subjected to principal component and hierarchical principal component analyses, allowing three major morphological groups to be identified. All three morphological groups were represented in both the “Occidental” and the “Oriental” germplasm, so the correlation between the phenotypic and the genotypic data sets was quite weak. The relevance of these results for evolutionary studies and the further improvement of eggplant are discussed. The population structure of the core set of germplasm shows that it can be used as a basis for an association mapping approach.
doi:10.1371/journal.pone.0073702
PMCID: PMC3765357  PMID: 24040032
3.  A RAD Tag Derived Marker Based Eggplant Linkage Map and the Location of QTLs Determining Anthocyanin Pigmentation 
PLoS ONE  2012;7(8):e43740.
Both inter- and intra-specific maps have been developed in eggplant (Solanum melongena L.). The former benefit from an enhanced frequency of marker polymorphism, but their relevance to marker-assisted crop breeding is limited. Combining the restriction-site associated DNA strategy with high throughput sequencing has facilitated the discovery of a large number of functional single nucleotide polymorphism (SNP) markers discriminating between the two eggplant mapping population parental lines ‘305E40’ and ‘67/3’. A set of 347 de novo SNPs, together with 84 anchoring markers, were applied to the F2 mapping population bred from the cross ‘305E40’ x ‘67/3’ to construct a linkage map. In all, 415 of the 431 markers were assembled into twelve major and one minor linkage group, spanning 1,390 cM, and the inclusion of established markers allowed each linkage group to be assigned to one of the 12 eggplant chromosomes. The map was then used to discover the genetic basis of seven traits associated with anthocyanin content. Each of the traits proved to be controlled by between one and six quantitative trait loci (QTL), of which at least one was a major QTL. Exploitation of syntenic relationships between the eggplant and tomato genomes facilitated the identification of potential candidate genes for the eggplant QTLs related to anthocyanin accumulation. The intra-specific linkage map should have utility for elucidating the genetic basis of other phenotypic traits in eggplant.
doi:10.1371/journal.pone.0043740
PMCID: PMC3422253  PMID: 22912903
4.  Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex 
BMC Research Notes  2012;5:252.
Background
The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach.
Results
A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance.
Conclusion
The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.
doi:10.1186/1756-0500-5-252
PMCID: PMC3434057  PMID: 22621324
Cynara cardunculus; Linkage map; Microsatellite; QTL; Earliness
5.  RAD tag sequencing as a source of SNP markers in Cynara cardunculus L 
BMC Genomics  2012;13:3.
Background
The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus.
Results
RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling.
Conclusion
The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.
doi:10.1186/1471-2164-13-3
PMCID: PMC3269995  PMID: 22214349
6.  Identification of SNP and SSR markers in eggplant using RAD tag sequencing 
BMC Genomics  2011;12:304.
Background
The eggplant (Solanum melongena L.) genome is relatively unexplored, especially compared to those of the other major Solanaceae crops tomato and potato. In particular, no SNP markers are publicly available; on the other hand, over 1,000 SSR markers were developed and publicly available. We have combined the recently developed Restriction-site Associated DNA (RAD) approach with Illumina DNA sequencing for rapid and mass discovery of both SNP and SSR markers for eggplant.
Results
RAD tags were generated from the genomic DNA of a pair of eggplant mapping parents, and sequenced to produce ~17.5 Mb of sequences arrangeable into ~78,000 contigs. The resulting non-redundant genomic sequence dataset consisted of ~45,000 sequences, of which ~29% were putative coding sequences and ~70% were in common between the mapping parents. The shared sequences allowed the discovery of ~10,000 SNPs and nearly 1,000 indels, equivalent to a SNP frequency of 0.8 per Kb and an indel frequency of 0.07 per Kb. Over 2,000 of the SNPs are likely to be mappable via the Illumina GoldenGate assay. A subset of 384 SNPs was used to successfully fingerprint a panel of eggplant germplasm, producing a set of informative diversity data. The RAD sequences also included nearly 2,000 putative SSRs, and primer pairs were designed to amplify 1,155 loci.
Conclusion
The high throughput sequencing of the RAD tags allowed the discovery of a large number of DNA markers, which will prove useful for extending our current knowledge of the genome organization of eggplant, for assisting in marker-aided selection and for carrying out comparative genomic analyses within the Solanaceae family.
doi:10.1186/1471-2164-12-304
PMCID: PMC3128069  PMID: 21663628
7.  Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database 
BMC Genomics  2009;10:454.
Background
The globe artichoke (Cynara cardunculus var. scolymus L.) is a significant crop in the Mediterranean basin. Despite its commercial importance and its both dietary and pharmaceutical value, knowledge of its genetics and genomics remains scant. Microsatellite markers have become a key tool in genetic and genomic analysis, and we have exploited recently acquired EST (expressed sequence tag) sequence data (Composite Genome Project - CGP) to develop an extensive set of microsatellite markers.
Results
A unigene assembly was created from over 36,000 globe artichoke EST sequences, containing 6,621 contigs and 12,434 singletons. Over 12,000 of these unigenes were functionally assigned on the basis of homology with Arabidopsis thaliana reference proteins. A total of 4,219 perfect repeats, located within 3,308 unigenes was identified and the gene ontology (GO) analysis highlighted some GO term's enrichments among different classes of microsatellites with respect to their position. Sufficient flanking sequence was available to enable the design of primers to amplify 2,311 of these microsatellites, and a set of 300 was tested against a DNA panel derived from 28 C. cardunculus genotypes. Consistent amplification and polymorphism was obtained from 236 of these assays. Their polymorphic information content (PIC) ranged from 0.04 to 0.90 (mean 0.66). Between 176 and 198 of the assays were informative in at least one of the three available mapping populations.
Conclusion
EST-based microsatellites have provided a large set of de novo genetic markers, which show significant amounts of polymorphism both between and within the three taxa of C. cardunculus. They are thus well suited as assays for phylogenetic analysis, the construction of genetic maps, marker-assisted breeding, transcript mapping and other genomic applications in the species.
doi:10.1186/1471-2164-10-454
PMCID: PMC2760586  PMID: 19785740
8.  The isolation and mapping of a novel hydroxycinnamoyltransferase in the globe artichoke chlorogenic acid pathway 
BMC Plant Biology  2009;9:30.
Background
The leaves of globe artichoke and cultivated cardoon (Cynara cardunculus L.) have significant pharmaceutical properties, which mainly result from their high content of polyphenolic compounds such as monocaffeoylquinic and dicaffeoylquinic acid (DCQ), and a range of flavonoid compounds.
Results
Hydroxycinnamoyl-CoA:quinate hydroxycinnamoyltransferase (HQT) encoding genes have been isolated from both globe artichoke and cultivated cardoon (GenBank accessions DQ915589 and DQ915590, respectively) using CODEHOP and PCR-RACE. A phylogenetic analysis revealed that their sequences belong to one of the major acyltransferase groups (anthranilate N-hydroxycinnamoyl/benzoyltransferase). The heterologous expression of globe artichoke HQT in E. coli showed that this enzyme can catalyze the esterification of quinic acid with caffeoyl-CoA or p-coumaroyl-CoA to generate, respectively, chlorogenic acid (CGA) and p-coumaroyl quinate. Real time PCR experiments demonstrated an increase in the expression level of HQT in UV-C treated leaves, and established a correlation between the synthesis of phenolic acids and protection against damage due to abiotic stress. The HQT gene, together with a gene encoding hydroxycinnamoyl-CoA:shikimate/quinate hydroxycinnamoyltransferase (HCT) previously isolated from globe artichoke, have been incorporated within the developing globe artichoke linkage maps.
Conclusion
A novel acyltransferase involved in the biosynthesis of CGA in globe artichoke has been isolated, characterized and mapped. This is a good basis for our effort to understand the genetic basis of phenylpropanoid (PP) biosynthesis in C. cardunculus.
doi:10.1186/1471-2229-9-30
PMCID: PMC2664813  PMID: 19292932
9.  Gene-based microsatellite development for mapping and phylogeny studies in eggplant 
BMC Genomics  2008;9:357.
Background
Eggplant (Solanum melongena L.) is a member of the Solanaceae family. In spite of its widespread cultivation and nutritional and economic importance, its genome has not as yet been extensively investigated. Few analyses have been carried out to determine the genetic diversity of eggplant at the DNA level, and linkage relationships have not been well characterised. As for the other Solanaceae crop species (potato, tomato and pepper), the level of intra-specific polymorphism appears to be rather limited, and so it is important that an effort is made to develop more informative DNA markers to make progress in understanding the genetics of eggplant and to advance its breeding. The aim of the present work was to develop a set of functional microsatellite (SSR) markers, via an in silico analysis of publicly available DNA sequence.
Results
From >3,300 genic DNA sequences, 50 SSR-containing candidates suitable for primer design were recovered. Of these, 39 were functional, and were then applied to a panel of 44 accessions, of which 38 were cultivated eggplant varieties, and six were from related Solanum species. The usefulness of the SSR assays for diversity analysis and taxonomic discrimination was demonstrated by constructing a phylogeny based on SSR polymorphisms, and by the demonstration that most were also functional when tested with template from tomato, pepper and potato. As a results of BLASTN analyses, several eggplant SSRs were found to have homologous counterparts in the phylogenetically related species, which carry microsatellite motifs in the same position.
Conclusion
The set of eggplant EST-SSR markers was informative for phylogenetic analysis and genetic mapping. Since EST-SSRs lie within expressed sequence, they have the potential to serve as perfect markers for genes determining variation in phenotype. Their high level of transferability to other Solanaceae species can be used to provide anchoring points for the integration of genetic maps across species.
doi:10.1186/1471-2164-9-357
PMCID: PMC2527019  PMID: 18667065
10.  Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L 
BMC Plant Biology  2007;7:14.
Background
Cynara cardunculus L. is an edible plant of pharmaceutical interest, in particular with respect to the polyphenolic content of its leaves. It includes three taxa: globe artichoke, cultivated cardoon, and wild cardoon. The dominating phenolics are the di-caffeoylquinic acids (such as cynarin), which are largely restricted to Cynara species, along with their precursor, chlorogenic acid (CGA). The scope of this study is to better understand CGA synthesis in this plant.
Results
A gene sequence encoding a hydroxycinnamoyltransferase (HCT) involved in the synthesis of CGA, was identified. Isolation of the gene sequence was achieved by using a PCR strategy with degenerated primers targeted to conserved regions of orthologous HCT sequences available. We have isolated a 717 bp cDNA which shares 84% aminoacid identity and 92% similarity with a tobacco gene responsible for the biosynthesis of CGA from p-coumaroyl-CoA and quinic acid. In silico studies revealed the globe artichoke HCT sequence clustering with one of the main acyltransferase groups (i.e. anthranilate N-hydroxycinnamoyl/benzoyltransferase). Heterologous expression of the full length HCT (GenBank accession DQ104740) cDNA in E. coli demonstrated that the recombinant enzyme efficiently synthesizes both chlorogenic acid and p-coumaroyl quinate from quinic acid and caffeoyl-CoA or p-coumaroyl-CoA, respectively, confirming its identity as a hydroxycinnamoyl-CoA: quinate HCT. Variable levels of HCT expression were shown among wild and cultivated forms of C. cardunculus subspecies. The level of expression was correlated with CGA content.
Conclusion
The data support the predicted involvement of the Cynara cardunculus HCT in the biosynthesis of CGA before and/or after the hydroxylation step of hydroxycinnamoyl esters.
doi:10.1186/1471-2229-7-14
PMCID: PMC1847684  PMID: 17374149

Results 1-10 (10)