PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Guo, xingzi")
1.  GhWRKY40, a Multiple Stress-Responsive Cotton WRKY Gene, Plays an Important Role in the Wounding Response and Enhances Susceptibility to Ralstonia solanacearum Infection in Transgenic Nicotiana benthamiana 
PLoS ONE  2014;9(4):e93577.
WRKY transcription factors form one of the largest transcription factor families and function as important components in the complex signaling processes that occur during plant stress responses. However, relative to the research progress in model plants, far less information is available on the function of WRKY proteins in cotton. In the present study, we identified the GhWRKY40 gene in cotton (Gossypium hirsutum) and determined that the GhWRKY40 protein is targeted to the nucleus and is a stress-inducible transcription factor. The GhWRKY40 transcript level was increased upon wounding and infection with the bacterial pathogen Ralstonia solanacearum. The overexpression of GhWRKY40 down-regulated most of the defense-related genes, enhanced the wounding tolerance and increased the susceptibility to R. solanacearum. Consistent with a role in multiple stress responses, we found that the GhWRKY40 transcript level was increased by the stress hormones salicylic acid (SA), methyl jasmonate (MeJA) and ethylene (ET). Moreover, GhWRKY40 interacted with the MAPK kinase GhMPK20, as shown using yeast two-hybrid and bimolecular fluorescence complementation systems. Collectively, these results suggest that GhWRKY40 is regulated by SA, MeJA and ET signaling and coordinates responses to wounding and R. solanacearum attack. These findings highlight the importance of WRKYs in regulating wounding- and pathogen-induced responses.
doi:10.1371/journal.pone.0093577
PMCID: PMC3991585  PMID: 24747610
2.  Characterization and Mutational Analysis of Omega-Class GST (GSTO1) from Apis cerana cerana, a Gene Involved in Response to Oxidative Stress 
PLoS ONE  2014;9(3):e93100.
The Omega-class of GSTs (GSTOs) is a class of cytosolic GSTs that have specific structural and functional characteristics that differ from those of other GST groups. In this study, we demonstrated the involvement of the GSTO1 gene from A. cerana cerana in the oxidative stress response and further investigated the effects of three cysteine residues of GSTO1 protein on this response. Real-time quantitative PCR (qPCR) showed that AccGSTO1 was highly expressed in larvae and foragers, primarily in the midgut, epidermis, and flight muscles. The AccGSTO1 mRNA was significantly induced by cold and heat at 1 h and 3 h. The TBA (2-Thiobarbituric acid) method indicated that cold or heat resulted in MDA accumulation, but silencing of AccGSTO1 by RNAi in honeybees increased the concentration of MDA. RNAi also increased the temperature sensitivity of honeybees and markedly reduced their survival. Disc diffusion assay indicated that overexpression of AccGSTO1 in E. coli caused the resistance to long-term oxidative stress. Furthermore, AccGSTO1 was active in an in vitro DNA protection assay. Mutations in Cys-28, Cys-70, and Cys-124 affected the catalytic activity and antioxidant activity of AccGSTO1. The predicted three-dimensional structure of AccGSTO1 was also influenced by the replacement of these cysteine residues. These findings suggest that AccGSTO1 plays a protective role in the response to oxidative stress.
doi:10.1371/journal.pone.0093100
PMCID: PMC3965517  PMID: 24667966
3.  A novel Omega-class glutathione S-transferase gene in Apis cerana cerana: molecular characterisation of GSTO2 and its protective effects in oxidative stress 
Cell Stress & Chaperones  2013;18(4):503-516.
Oxidative stress may be the most significant threat to the survival of living organisms. Glutathione S-transferases (GSTs) serve as the primary defences against xenobiotic and peroxidative-induced oxidative damage. In contrast to other well-defined GST classes, the Omega-class members are poorly understood, particularly in insects. Here, we isolated and characterised the GSTO2 gene from Apis cerana cerana (AccGSTO2). The predicted transcription factor binding sites in the AccGSTO2 promoter suggested possible functions in early development and antioxidant defence. Real-time quantitative PCR (qPCR) and western blot analyses indicated that AccGSTO2 was highly expressed in larvae and was predominantly localised to the brain tissue in adults. Moreover, AccGSTO2 transcription was induced by various abiotic stresses. The purified recombinant AccGSTO2 exhibited glutathione-dependent dehydroascorbate reductase and peroxidase activities. Furthermore, it could prevent DNA damage. In addition, Escherichia coli overexpressing AccGSTO2 displayed resistance to long-term oxidative stress exposure in disc diffusion assays. Taken together, these results suggest that AccGSTO2 plays a protective role in counteracting oxidative stress.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-013-0406-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s12192-013-0406-2
PMCID: PMC3682018  PMID: 23382010
Apis cerana cerana; GSTO2; Gene expression pattern; Oxidative stress; Biochemical properties
4.  Identification, genomic organization, and oxidative stress response of a sigma class glutathione S-transferase gene (AccGSTS1) in the honey bee, Apis cerana cerana 
Cell Stress & Chaperones  2012;18(4):415-426.
Glutathione S-transferases (GSTs) are members of a multifunctional antioxidant enzyme superfamily that play pivotal roles in both detoxification and protection against oxidative damage caused by reactive oxygen species. In this study, a complementary DNA (cDNA) encoding a sigma class GST was identified in the Chinese honey bee, Apis cerana cerana (AccGSTS1). AccGSTS1 was constitutively expressed in all tissues of adult worker bees, including the brain, fat body, epidermis, muscle, and midgut, with particularly robust transcription in the fat body. Relative messenger RNA expression levels of AccGSTS1 at different developmental stages varied, with the highest levels of expression observed in adults. The potential function of AccGSTS1 in cellular defenses against abiotic stresses (cold, heat, UV, H2O2, HgCl2, and insecticides) was investigated. AccGSTS1 was significantly upregulated in response to all of the treatment conditions examined, although the induction levels were varied. Recombinant AccGSTS1 protein showed characteristic glutathione-conjugating catalytic activity toward 1-chloro-2,4-dinitrobenzene. Functional assays revealed that AccGSTS1 could remove H2O2, thereby protecting DNA from oxidative damage. Escherichia coli overexpressing AccGSTS1 showed long-term resistance under conditions of oxidative stress. Together, these results suggest that AccGSTS1 is a crucial antioxidant enzyme involved in cellular antioxidant defenses and honey bee survival.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-012-0394-7) contains supplementary material, which is available to authorized users.
doi:10.1007/s12192-012-0394-7
PMCID: PMC3682021  PMID: 23250585
Glutathione-S-transferase; Oxidative stress; Antioxidant defense; Apis cerana cerana
5.  Cotton GhMKK1 Induces the Tolerance of Salt and Drought Stress, and Mediates Defence Responses to Pathogen Infection in Transgenic Nicotiana benthamiana 
PLoS ONE  2013;8(7):e68503.
Mitogen-activated protein kinase kinases (MAPKK) mediate a variety of stress responses in plants. So far little is known on the functional role of MAPKKs in cotton. In the present study, Gossypium hirsutum MKK1 (GhMKK1) function was investigated. GhMKK1 protein may activate its specific targets in both the nucleus and cytoplasm. Treatments with salt, drought, and H2O2 induced the expression of GhMKK1 and increased the activity of GhMKK1, while overexpression of GhMKK1 in Nicotiana benthamiana enhanced its tolerance to salt and drought stresses as determined by many physiological data. Additionally, GhMKK1 activity was found to up-regulate pathogen-associated biotic stress, and overexpression of GhMKK1 increased the susceptibility of the transgenic plants to the pathogen Ralstonia solanacearum by reducing the expression of PR genes. Moreover, GhMKK1-overexpressing plants also exhibited an enhanced reactive oxygen species scavenging capability and markedly elevated activities of several antioxidant enzymes. These results indicate that GhMKK1 is involved in plants defence responses and provide new data to further analyze the function of plant MAPK pathways.
doi:10.1371/journal.pone.0068503
PMCID: PMC3700956  PMID: 23844212
6.  Molecular cloning and characterization of Hsp27.6: the first reported small heat shock protein from Apis cerana cerana 
Cell Stress & Chaperones  2012;17(5):539-551.
Small heat shock proteins (sHSPs) play an important role in the cellular defense of prokaryotic and eukaryotic organisms against a variety of internal and external stressors. In this study, a cDNA clone encoding a member of the α-crystallin/sHSP family, termed AccHsp27.6, was isolated from Apis cerana cerana. The full-length cDNA is 1,014 bp in length and contains a 708-bp open reading frame encoding a protein of 236 amino acids with a calculated molecular weight of 27.6 kDa and an isoelectric point of 7.53. Seven putative heat shock elements and three NF-κB binding sites were present in the 5′-flanking region, suggesting a possible function in immunity. A semi-quantitative RT-PCR analysis indicated that AccHsp27.6 was expressed in all tested tissues and at different developmental stages. Furthermore, expression of the AccHsp27.6 transcript was induced by exposure to heat shock, H2O2, a number of different chemicals (including SO2, formaldehyde, alcohol, acetone, chloroform, and the pesticides phoxime and acetamiprid), and the microbes Staphylococcus aureus and Micrococcus luteus. In contrast, the mRNA expression could be repressed by CO2, the pesticides pyriproxyfen and cyhalothrin, and the microbes Bacillus subtilis and Pseudomonas aeruginosa. Notably, the recombinant AccHsp27.6 protein exhibited significant in vitro molecular chaperone activity and antimicrobial activity. Taken together, these results suggest that AccHsp27.6 might play an important role in the response to abiotic and biotic stresses and in immune reactions.
Electronic supplementary material
The online version of this article (doi:10.1007/s12192-012-0330-x) contains supplementary material, which is available to authorized users.
doi:10.1007/s12192-012-0330-x
PMCID: PMC3535166  PMID: 22351490
Apis cerana cerana; Expression; Gene cloning; Immunological function; Small heat shock proteins
7.  Identification and Expression Analysis of a Putative Fatty Acidbinding Protein Gene in the Asian Honeybee, Apis cerana cerana 
Fatty acid-binding proteins (FABPs) play pivotal roles in cellular signaling, gene transcription, and lipid metabolism in vertebrates and invertebrates. In this study, a putative FABP gene, referred to as AccFABP, was isolated from the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae). The full-length cDNA consisted of 725 bp, and encoded a protein of 204 amino acids. Homology and phylogenetic analysis indicated that AccFABP was a member of the FABP multifamily. The genomic structure of this gene, which was common among FABP multifamily members, spanned 1,900 bp, and included four exons and three introns. Gene expression analysis revealed that AccFABP was highly expressed in the dark-pigmented phase of pupal development, with peak expression observed in the fat bodies of the dark-pigmented phase pupae. The AccFABP transcripts in the fat body were upregulated by exposure to dietary fatty acids such as conjugated linoleic acid, docosahexaenoic acid, and arachidonic acid. Transcription factor binding sites for Caudal-Related Homeobox and functional CCAAT/enhancer binding site, which were respectively associated with tissue expression and lipid metabolism, were detected in the 5′ promoter sequence. The evidence provided in the present study suggests that AccFABP may regulate insect growth and development, and lipid metabolism.
doi:10.1673/031.013.10101
PMCID: PMC4011366  PMID: 24738831
cloning; real-time RT-PCR
8.  GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development 
BMC Plant Biology  2012;12:144.
Background
As a large family of regulatory proteins, WRKY transcription factors play essential roles in the processes of adaptation to diverse environmental stresses and plant growth and development. Although several studies have investigated the role of WRKY transcription factors during these processes, the mechanisms underlying the function of WRKY members need to be further explored, and research focusing on the WRKY family in cotton crops is extremely limited.
Results
In the present study, a gene encoding a putative WRKY family member, GhWRKY15, was isolated from cotton. GhWRKY15 is present as a single copy gene, and a transient expression analysis indicated that GhWRKY15 was localised to the nucleus. Additionally, a group of cis-acting elements associated with the response to environmental stress and plant growth and development were detected in the promoter. Consistently, northern blot analysis showed that GhWRKY15 expression was significantly induced in cotton seedlings following fungal infection or treatment with salicylic acid, methyl jasmonate or methyl viologen. Furthermore, GhWRKY15-overexpressing tobacco exhibited more resistance to viral and fungal infections compared with wild-type tobacco. The GhWRKY15-overexpressing tobacco also exhibited increased RNA expression of several pathogen-related genes, NONEXPRESSOR OF PR1, and two genes that encode enzymes involved in ET biosynthesis. Importantly, increased activity of the antioxidant enzymes POD and APX during infection and enhanced expression of NtAPX1 and NtGPX in transgenic tobacco following methyl viologen treatment were observed. Moreover, GhWRKY15 transcription was greater in the roots and stems compared with the expression in the cotyledon of cotton, and the stems of transgenic plants displayed faster elongation at the earlier shooting stages compared with wide type tobacco. Additionally, exposure to abiotic stresses, including cold, wounding and drought, resulted in the accumulation of GhWRKY15 transcripts.
Conclusion
Overall, our data suggest that overexpression of GhWRKY15 may contribute to the alteration of defence resistance to both viral and fungal infections, probably through regulating the ROS system via multiple signalling pathways in tobacco. It is intriguing that GhWRKY15 overexpression in tobacco affects plant growth and development, especially stem elongation. This finding suggests that the role of the WRKY proteins in disease resistance may be closely related to their function in regulating plant growth and development.
doi:10.1186/1471-2229-12-144
PMCID: PMC3489871  PMID: 22883108
GhWRKY15; Cotton; Disease resistance; SA; ROS; Plant development
9.  Cotton GhMKK5 affects disease resistance, induces HR-like cell death, and reduces the tolerance to salt and drought stress in transgenic Nicotiana benthamiana  
Journal of Experimental Botany  2012;63(10):3935-3951.
Mitogen-activated protein kinase (MAPK) cascades are involved in various processes from plant growth and development to biotic and abiotic stress responses. MAPK kinases (MAPKKs), which link MAPKs and MAPKK kinases (MAPKKKs), play crucial roles in MAPK cascades to mediate a variety of stress responses in plants. However, few MAPKKs have been functionally characterized in cotton (Gossypium hirsutum). In this study, a novel gene, GhMKK5, from cotton belonging to the group C MAPKKs was isolated and characterized. The expression of GhMKK5 can be induced by pathogen infection, abiotic stresses, and multiple defence-related signal molecules. The overexpression of GhMKK5 in Nicotiana benthamiana enhanced the plants’ resistance to the bacterial pathogen Ralstonia solanacearum by elevating the expression of pathogen resistance (PR) genes, including PR1a, PR2, PR4, PR5, and NPR1, but increased the plants’ sensitivity to the oomycete pathogen Phytophthora parasitica var. nicotianae Tucker. Importantly, GhMKK5-overexpressing plants displayed markedly elevated expression of reactive oxygen species-related and cell death marker genes, such as NtRbohA and NtCDM, and resulted in hypersensitive response (HR)-like cell death characterized by the accumulation of H2O2. Furthermore, it was demonstrated that GhMKK5 overexpression in plants reduced their tolerance to salt and drought stresses, as determined by statistical analysis of seed germination, root length, leaf water loss, and survival rate. Drought obviously accelerated the cell death phenomenon in GhMKK5-overexpressing plants. These results suggest that GhMKK5 may play an important role in pathogen infection and the regulation of the salt and drought stress responses in plants.
doi:10.1093/jxb/ers086
PMCID: PMC3388830  PMID: 22442420
Abiotic stress tolerance; cell death; cotton; disease resistance; mitogen-activated protein kinase kinase
10.  GhMPK16, a novel stress-responsive group D MAPK gene from cotton, is involved in disease resistance and drought sensitivity 
BMC Molecular Biology  2011;12:22.
Background
Mitogen-activated protein kinase (MAPK) cascades play pivotal roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Members of group A and B have been extensively characterized, but little information on the group D MAPKs has been reported.
Results
In this study, we isolated and characterised GhMPK16, the first group D MAPK gene found in cotton. Southern blot analysis suggests GhMPK16 is single copy in the cotton genome, and RNA blot analysis indicates that GhMPK16 transcripts accumulate following pathogen infection and treatment with multiple defense-related signal molecules. The analysis of the promoter region of GhMPK16 revealed a group of putative cis-acting elements related to stress responses. Subcellular localization analysis suggests that GhMPK16 acts in the nucleus. Transgenic Arabidopsis overexpressing GhMPK16 displayed significant resistance to fungi (Colletotrichum nicotianae and Alternaria alternata) and bacteria (Pseudomonas solanacearum) pathogen, and the transcripts of pathogen-related (PR) genes were more rapidly and strongly induced in the transgenic plants. Furthermore, transgenic Arabidopsis showed reduced drought tolerance and rapid H2O2 accumulation.
Conclusion
These results suggest that GhMPK16 might be involved in multiple signal transduction pathways, including biotic and abiotic stress signaling pathways.
doi:10.1186/1471-2199-12-22
PMCID: PMC3117701  PMID: 21575189
Cotton (Gossypium hirsutum); GhMPK16; Pathogen resistance; Drought sensitivity

Results 1-10 (10)