Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Diversity of CRISPR systems in the euryarchaeal Pyrococcales 
RNA Biology  2013;10(5):659-670.
Pyrococcales are members of the order Thermococcales, a group of hyperthermophilic euryarchaea that are frequently found in deep sea hydrothermal vents. Infectious genetic elements, such as plasmids and viruses, remain a threat even in this remote environment and these microorganisms have developed several ways to fight their genetic invaders. Among these are the recently discovered CRISPR systems. In this review, we have combined and condensed available information on genetic elements infecting the Thermococcales and on the multiple CRISPR systems found in the Pyrococcales to fight them. Their organization and mode of action will be presented with emphasis on the Type III-B system that is the only CRISPR system known to target RNA molecules in a process reminiscent of RNA interference. The intriguing case of Pyrococcus abyssi, which is among the rare strains to present a CRISPR system devoid of the universal cas1 and cas2 genes, is also discussed.
PMCID: PMC3737323  PMID: 23422322
Pyrococcales; Thermococcales; CRISPR; Cas; virus; hyperthermophiles
2.  Identification of CRISPR and riboswitch related RNAs among novel noncoding RNAs of the euryarchaeon Pyrococcus abyssi 
BMC Genomics  2011;12:312.
Noncoding RNA (ncRNA) has been recognized as an important regulator of gene expression networks in Bacteria and Eucaryota. Little is known about ncRNA in thermococcal archaea except for the eukaryotic-like C/D and H/ACA modification guide RNAs.
Using a combination of in silico and experimental approaches, we identified and characterized novel P. abyssi ncRNAs transcribed from 12 intergenic regions, ten of which are conserved throughout the Thermococcales. Several of them accumulate in the late-exponential phase of growth. Analysis of the genomic context and sequence conservation amongst related thermococcal species revealed two novel P. abyssi ncRNA families. The CRISPR family is comprised of crRNAs expressed from two of the four P. abyssi CRISPR cassettes. The 5'UTR derived family includes four conserved ncRNAs, two of which have features similar to known bacterial riboswitches. Several of the novel ncRNAs have sequence similarities to orphan OrfB transposase elements. Based on RNA secondary structure predictions and experimental results, we show that three of the twelve ncRNAs include Kink-turn RNA motifs, arguing for a biological role of these ncRNAs in the cell. Furthermore, our results show that several of the ncRNAs are subjected to processing events by enzymes that remain to be identified and characterized.
This work proposes a revised annotation of CRISPR loci in P. abyssi and expands our knowledge of ncRNAs in the Thermococcales, thus providing a starting point for studies needed to elucidate their biological function.
PMCID: PMC3124441  PMID: 21668986
3.  Distribution of short interstitial telomere motifs in two plant genomes: putative origin and function 
BMC Plant Biology  2010;10:283.
Short interstitial telomere motifs (telo boxes) are short sequences identical to plant telomere repeat units. They are observed within the 5' region of several genes over-expressed in cycling cells. In synergy with various cis-acting elements, these motifs participate in the activation of expression. Here, we have analysed the distribution of telo boxes within Arabidopsis thaliana and Oryza sativa genomes and their association with genes involved in the biogenesis of the translational apparatus.
Our analysis showed that the distribution of the telo box (AAACCCTA) in different genomic regions of A. thaliana and O. sativa is not random. As is also the case for plant microsatellites, they are preferentially located in the 5' flanking regions of genes, mainly within the 5' UTR, and distributed as a gradient along the direction of transcription. As previously reported in Arabidopsis, a conserved topological association of telo boxes with site II or TEF cis-acting elements is observed in almost all promoters of genes encoding ribosomal proteins in O. sativa. Such a conserved promoter organization can be found in other genes involved in the biogenesis of the translational machinery including rRNA processing proteins and snoRNAs. Strikingly, the association of telo boxes with site II motifs or TEF boxes is conserved in promoters of genes harbouring snoRNA clusters nested within an intron as well as in the 5' flanking regions of non-intronic snoRNA genes. Thus, the search for associations between telo boxes and site II motifs or TEF box in plant genomes could provide a useful tool for characterizing new cryptic RNA pol II promoters.
The data reported in this work support the model previously proposed for the spreading of telo boxes within plant genomes and provide new insights into a putative process for the acquisition of microsatellites in plants. The association of telo boxes with site II or TEF cis-acting elements appears to be an essential feature of plant genes involved in the biogenesis of ribosomes and clearly indicates that most plant snoRNAs are RNA pol II products.
PMCID: PMC3022908  PMID: 21171996
4.  Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions 
PLoS ONE  2010;5(5):e10725.
Staphylococcus aureus is a versatile bacterial opportunist responsible for a wide spectrum of infections. The severity of these infections is highly variable and depends on multiple parameters including the genome content of the bacterium as well as the condition of the infected host. Clinically and epidemiologically, S. aureus shows a particular capacity to survive and adapt to drastic environmental changes including the presence of numerous antimicrobial agents. Mechanisms triggering this adaptation remain largely unknown despite important research efforts. Most studies evaluating gene content have so far neglected to analyze the so-called intergenic regions as well as potential antisense RNA molecules.
Principal Findings
Using high-throughput sequencing technology, we performed an inventory of the whole transcriptome of S. aureus strain N315. In addition to the annotated transcription units, we identified more than 195 small transcribed regions, in the chromosome and the plasmid of S. aureus strain N315. The coding strand of each transcript was identified and structural analysis enabled classification of all discovered transcripts. RNA purified at four time-points during the growth phase of the bacterium allowed us to define the temporal expression of such transcripts. A selection of 26 transcripts of interest dispersed along the intergenic regions was assessed for expression changes in the presence of various stress conditions including pH, temperature, oxidative shocks and growth in a stringent medium. Most of these transcripts showed expression patterns specific for the defined stress conditions that we tested.
These RNA molecules potentially represent important effectors of S. aureus adaptation and more generally could support some of the epidemiological characteristics of the bacterium.
PMCID: PMC2873960  PMID: 20505759
5.  A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation 
Nucleic Acids Research  2009;37(21):7239-7257.
Bioinformatic analysis of the intergenic regions of Staphylococcus aureus predicted multiple regulatory regions. From this analysis, we characterized 11 novel noncoding RNAs (RsaA‐K) that are expressed in several S. aureus strains under different experimental conditions. Many of them accumulate in the late-exponential phase of growth. All ncRNAs are stable and their expression is Hfq-independent. The transcription of several of them is regulated by the alternative sigma B factor (RsaA, D and F) while the expression of RsaE is agrA-dependent. Six of these ncRNAs are specific to S. aureus, four are conserved in other Staphylococci, and RsaE is also present in Bacillaceae. Transcriptomic and proteomic analysis indicated that RsaE regulates the synthesis of proteins involved in various metabolic pathways. Phylogenetic analysis combined with RNA structure probing, searches for RsaE‐mRNA base pairing, and toeprinting assays indicate that a conserved and unpaired UCCC sequence motif of RsaE binds to target mRNAs and prevents the formation of the ribosomal initiation complex. This study unexpectedly shows that most of the novel ncRNAs carry the conserved C−rich motif, suggesting that they are members of a class of ncRNAs that target mRNAs by a shared mechanism.
PMCID: PMC2790875  PMID: 19786493
6.  RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes 
BMC Genomics  2008;9:470.
Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes.
By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions.
The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
PMCID: PMC2584109  PMID: 18844986
7.  LeARN: a platform for detecting, clustering and annotating non-coding RNAs 
BMC Bioinformatics  2008;9:21.
In the last decade, sequencing projects have led to the development of a number of annotation systems dedicated to the structural and functional annotation of protein-coding genes. These annotation systems manage the annotation of the non-protein coding genes (ncRNAs) in a very crude way, allowing neither the edition of the secondary structures nor the clustering of ncRNA genes into families which are crucial for appropriate annotation of these molecules.
LeARN is a flexible software package which handles the complete process of ncRNA annotation by integrating the layers of automatic detection and human curation.
This software provides the infrastructure to deal properly with ncRNAs in the framework of any annotation project. It fills the gap between existing prediction software, that detect independent ncRNA occurrences, and public ncRNA repositories, that do not offer the flexibility and interactivity required for annotation projects. The software is freely available from the download section of the website
PMCID: PMC2241582  PMID: 18194551
8.  Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp 
Nucleic Acids Research  2001;29(22):4518-4529.
Following a search of the Pyrococcus genomes for homologs of eukaryotic methylation guide small nucleolar RNAs, we have experimentally identified in Pyrococcus abyssi four novel box C/D small RNAs predicted to direct 2′-O-ribose methylations onto the first position of the anticodon in tRNALeu(CAA), tRNALeu(UAA), elongator tRNAMet and tRNATrp, respectively. Remarkably, one of them corresponds to the intron of its presumptive target, pre-tRNATrp. This intron is predicted to direct in cis two distinct ribose methylations within the unspliced tRNA precursor, not only onto the first position of the anticodon in the 5′ exon but also onto position 39 (universal tRNA numbering) in the 3′ exon. The two intramolecular RNA duplexes expected to direct methylation, which both span an exon–intron junction in pre-tRNATrp, are phylogenetically conserved in euryarchaeotes. We have experimentally confirmed the predicted guide function of the box C/D intron in halophile Haloferax volcanii by mutagenesis analysis, using an in vitro splicing/RNA modification assay in which the two cognate ribose methylations of pre-tRNATrp are faithfully reproduced. Euryarchaeal pre-tRNATrp should provide a unique system to further investigate the molecular mechanisms of RNA-guided ribose methylation and gain new insights into the origin and evolution of the complex family of archaeal and eukaryotic box C/D small RNAs.
PMCID: PMC92551  PMID: 11713301
9.  The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates 
Nature Communications  2014;5:3657.
Vertebrate evolution has been shaped by several rounds of whole-genome duplications (WGDs) that are often suggested to be associated with adaptive radiations and evolutionary innovations. Due to an additional round of WGD, the rainbow trout genome offers a unique opportunity to investigate the early evolutionary fate of a duplicated vertebrate genome. Here we show that after 100 million years of evolution the two ancestral subgenomes have remained extremely collinear, despite the loss of half of the duplicated protein-coding genes, mostly through pseudogenization. In striking contrast is the fate of miRNA genes that have almost all been retained as duplicated copies. The slow and stepwise rediploidization process characterized here challenges the current hypothesis that WGD is followed by massive and rapid genomic reorganizations and gene deletions.
Although whole-genome duplications (WGDs) are rare events, they have an important role in shaping vertebrate evolution. Here, the authors sequence the rainbow trout genome and show that rediploidization after WGD occurs in a slow and stepwise manner.
PMCID: PMC4071752  PMID: 24755649

Results 1-9 (9)