Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Development of genomic microsatellites in Gleditsia triacanthos (Fabaceae) using Illumina sequencing1 
Applications in Plant Sciences  2013;1(12):apps.1300050.
• Premise of the study: Fourteen genomic microsatellite markers were developed and characterized in honey locust, Gleditsia triacanthos, using Illumina sequencing. Due to their high variability, these markers can be applied in analyses of genetic diversity and structure, and in mating system and gene flow studies.
• Methods and Results: Thirty-six individuals from across the species range were included in a genetic diversity analysis and yielded three to 20 alleles per locus. Observed heterozygosity and expected heterozygosity ranged from 0.214 to 0.944 and from 0.400 to 0.934, respectively, with minimal occurrence of null alleles. Regular segregation of maternal alleles was observed at seven loci and moderate segregation distortion at four of 11 loci that were heterozygous in the seed parent.
• Conclusions: Honey locust is an important agroforestry tree capable of very fast growth and tolerance of poor site conditions. This is the first report of genomic microsatellites for this species.
PMCID: PMC4103117  PMID: 25202504
agroforestry; Fabaceae; Gleditsia triacanthos; microsatellite; next-generation sequencing
2.  The Multicomponent Medication Lymphomyosot Improves the Outcome of Experimental Lymphedema 
Lymphatic Research and Biology  2013;11(2):81-92.
Secondary lymphedema is a life-long disease of painful tissue swelling that often follows axillary lymph node dissection to treat breast cancer. It is hypothesized that poor lymphatic regeneration across the obstructive scar tissue during the wound healing process may predispose the tissue to swell at a later date. Treatment for lymphedema remains suboptimal and is in most cases palliative. The purpose of this study was to evaluate the ability of Lymphomyosot to treat tissue swelling and promote lymphangiogenesis in experimental models of murine lymphedema.
Experimental models of mouse lymphedema were injected with varied amounts of Lymphomyosot and saline as control. Measurements of tail swelling and wound closure were taken and compared amongst the groups. Three separate groups of mice were analyzed for lymphatic capillary migration, lymphatic vessel regeneration, and macrophage recruitment.
Lymphomyosot significantly reduced swelling and increased the rate of surgical wound closure. Lymphomyosot did not increase the migration of lymph capillaries in a mouse tail skin regeneration model or regeneration of lymph vessels following murine axillary lymph node dissection.
Lymphomyosot may act through inflammatory and wound repair pathways to reduce experimental lymphedema. Its ability to regulate inflammation as well as assist in tissue repair and extracellular formation may allow for the production of a scar-free matrix bridge through which migrating cells and accumulated interstitial fluid can freely spread.
PMCID: PMC3696932  PMID: 23725444
3.  Comparative mapping in the Fagaceae and beyond with EST-SSRs 
BMC Plant Biology  2012;12:153.
Genetic markers and linkage mapping are basic prerequisites for comparative genetic analyses, QTL detection and map-based cloning. A large number of mapping populations have been developed for oak, but few gene-based markers are available for constructing integrated genetic linkage maps and comparing gene order and QTL location across related species.
We developed a set of 573 expressed sequence tag-derived simple sequence repeats (EST-SSRs) and located 397 markers (EST-SSRs and genomic SSRs) on the 12 oak chromosomes (2n = 2x = 24) on the basis of Mendelian segregation patterns in 5 full-sib mapping pedigrees of two species: Quercus robur (pedunculate oak) and Quercus petraea (sessile oak). Consensus maps for the two species were constructed and aligned. They showed a high degree of macrosynteny between these two sympatric European oaks. We assessed the transferability of EST-SSRs to other Fagaceae genera and a subset of these markers was mapped in Castanea sativa, the European chestnut. Reasonably high levels of macrosynteny were observed between oak and chestnut. We also obtained diversity statistics for a subset of EST-SSRs, to support further population genetic analyses with gene-based markers. Finally, based on the orthologous relationships between the oak, Arabidopsis, grape, poplar, Medicago, and soybean genomes and the paralogous relationships between the 12 oak chromosomes, we propose an evolutionary scenario of the 12 oak chromosomes from the eudicot ancestral karyotype.
This study provides map locations for a large set of EST-SSRs in two oak species of recognized biological importance in natural ecosystems. This first step toward the construction of a gene-based linkage map will facilitate the assignment of future genome scaffolds to pseudo-chromosomes. This study also provides an indication of the potential utility of new gene-based markers for population genetics and comparative mapping within and beyond the Fagaceae.
PMCID: PMC3493355  PMID: 22931513
4.  A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study 
BMC Genomics  2010;11:570.
Expressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut).
A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference full-sib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher.
We have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance.
PMCID: PMC3091719  PMID: 20950475
5.  Patterns of contemporary hybridization inferred from paternity analysis in a four-oak-species forest 
Few studies address the issue of hybridization in a more than two-species context. The species-rich Quercus complex is one of the systems which can offer such an opportunity. To investigate the contemporary pattern of hybridization we sampled and genotyped 320 offspring from a natural mixed forest comprising four species of the European white oak complex: Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto.
A total of 165 offspring were assigned unambiguously to one of the pollen donors within the study plot. The minimum amount of effective pollen originating from outside the plot varied markedly among the seed parents, ranging from 0.18 to 0.87. The majority of the successful matings (64.1%) occurred between conspecific individuals indicating the existence of reproductive barriers between oak species. However, the isolation was not complete since we found strong evidence for both first-generation (8.4%) and later-generation hybrids (27.5%). Only two out of eight seed parents, belonging to Q. petraea and Q. robur, showed a high propensity to hybridize with Q. pubescens and Q. petraea, respectively. Significant structure of the effective pollen pools (Φpt = 0.069, P = 0.01) was detected in our sample. However, no support was found for the isolation by distance hypothesis. The proportion of hybrids was much higher (79%) in the seed generation when compared to the adult tree generation.
First-generation hybrids were observed only between three out of six possible species combinations. Hybrids between one pair of species preferred to mate with one of their parental species. The observation of first and later-generation hybrids in higher frequency in acorns than in adults might be explained by selection against hybrid genotypes, the history of this uneven-aged forest or past introgression between species.
PMCID: PMC2795763  PMID: 19968862
6.  Molecular genetic tools to infer the origin of forest plants and wood 
Most forest tree species exhibit high levels of genetic diversity that can be used to trace the origin of living plants or their products such as timber and processed wood. Recent progress to isolate DNA not only from living tissue but also from wood and wood products offers new opportunities to test the declared origin of material such as seedlings for plantation establishment or timber. However, since most forest tree populations are weakly differentiated, the identification of genetic markers to differentiate among spatially isolated populations is often difficult and time consuming. Two important fields of “forensic” applications are described: Molecular tools are applied to test the declared origin of forest reproductive material used for plantation establishment and of internationally traded timber and wood products. These applications are illustrated taking examples from Germany, where mechanisms have been developed to improve the control of the trade with forest seeds and seedlings, and from the trade with wood of the important Southeast Asian tree family Dipterocarpaceae. Prospects and limitations of the use of molecular genetic methods to conclude on the origin of forest plants, wood, and wood products are discussed.
PMCID: PMC2807931  PMID: 19911178
DNA marker; Genetic fingerprint; Forensic application; Forest reproductive material; Tropical timber; Dipterocarpaceae
7.  Transferability of Simple Sequence Repeat (SSR) Markers Developed in Litchi chinensis to Blighia sapida (Sapindaceae) 
Ackee (Blighia sapida, Sapindaceae) is a multipurpose fruit tree species of high economic importance, native to the Guinean forests of West Africa, and belongs to the same family as that of lychee (Litchi chinensis). In this study, a set of 12 primer pairs for simple sequence repeats (SSRs) previously developed for lychee has been evaluated for polymorphism in 16 ackee trees from different populations. Seven primer pairs have been found to be transferable, and four have revealed polymorphisms. However, the average number of alleles per locus has dropped from 4.9 for lychee to 3.7 for ackee. Characterization of the four polymorphic markers in 279 individuals belonging to14 different ackee populations from Benin has revealed that the numbers of alleles per locus range from two to 14 with a mean number of 5.8. The observed and expected heterozygosities range between 0.020 to 0.359 and 0.020 to 0.396, respectively.
PMCID: PMC3881568  PMID: 24415832
Blighia sapida; Litchi chinensis; Microsatellites; SSRs; Sapindaceae family; Transferability
8.  Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community 
Analysis of interspecific gene flow is crucial for the understanding of speciation processes and maintenance of species integrity. Oaks (genus Quercus, Fagaceae) are among the model species for the study of hybridization. Natural co-occurrence of four closely related oak species is a very rare case in the temperate forests of Europe. We used both morphological characters and genetic markers to characterize hybridization in a natural community situated in west-central Romania and which consists of Quercus robur, Q. petraea, Q. pubescens, and Q. frainetto, respectively.
On the basis of pubescence and leaf morphological characters ~94% of the sampled individuals were assigned to pure species. Only 16 (~6%) individual trees exhibited intermediate morphologies or a combination of characters of different species. Four chloroplast DNA haplotypes were identified in the study area. The distribution of haplotypes within the white oak complex showed substantial differences among species. However, the most common haplotypes were present in all four species. Furthermore, based on a set of 7 isozyme and 6 microsatellite markers and using a Bayesian admixture analysis without any a priori information on morphology we found that four genetic clusters best fit the data. There was a very good correspondence of each species with one of the inferred genetic clusters. The estimated introgression level varied markedly between pairs of species ranging from 1.7% between Q. robur and Q. frainetto to 16.2% between Q. pubescens and Q. frainetto. Only nine individuals (3.4%) appeared to be first-generation hybrids.
Our data indicate that natural hybridization has occurred at relatively low rates. The different levels of gene flow among species might be explained by differences in flowering time and spatial position within the stand. In addition, a partial congruence between phenotypically and genetically intermediate individuals was found, suggesting that intermediate appearance does not necessarily mean hybridization. However, it appears that natural hybridization did not seriously affect the species identity in this area of sympatry.
PMCID: PMC2244923  PMID: 17996115

Results 1-8 (8)