PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Development of a Configurable Growth Chamber with a Computer Vision System to Study Circadian Rhythm in Plants 
Sensors (Basel, Switzerland)  2012;12(11):15356-15375.
Plant development is the result of an endogenous morphogenetic program that integrates environmental signals. The so-called circadian clock is a set of genes that integrates environmental inputs into an internal pacing system that gates growth and other outputs. Study of circadian growth responses requires high sampling rates to detect changes in growth and avoid aliasing. We have developed a flexible configurable growth chamber comprising a computer vision system that allows sampling rates ranging between one image per 30 s to hours/days. The vision system has a controlled illumination system, which allows the user to set up different configurations. The illumination system used emits a combination of wavelengths ensuring the optimal growth of species under analysis. In order to obtain high contrast of captured images, the capture system is composed of two CCD cameras, for day and night periods. Depending on the sample type, a flexible image processing software calculates different parameters based on geometric calculations. As a proof of concept we tested the system in three different plant tissues, growth of petunia- and snapdragon (Antirrhinum majus) flowers and of cladodes from the cactus Opuntia ficus-indica. We found that petunia flowers grow at a steady pace and display a strong growth increase in the early morning, whereas Opuntia cladode growth turned out not to follow a circadian growth pattern under the growth conditions imposed. Furthermore we were able to identify a decoupling of increase in area and length indicating that two independent growth processes are responsible for the final size and shape of the cladode.
doi:10.3390/s121115356
PMCID: PMC3522967  PMID: 23202214
circadian clock; floral size; diel growth; Petunia opuntia; Antirrhinum majus; computer vision
2.  A molecular recombination map of Antirrhinum majus 
BMC Plant Biology  2010;10:275.
Background
Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus.
Results
We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size.
Conclusions
The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.
doi:10.1186/1471-2229-10-275
PMCID: PMC3017841  PMID: 21159166
3.  Floral organ size control 
Plant Signaling & Behavior  2009;4(9):814-817.
Growth of lateral organs is a complex mechanism that starts with formation of lateral primordia.Basal developmental programs like polarity, organ identity and environmental cues influence the final organ size achieved via coordinated cell division and expansion. recent evidence shows that the precise balance between these two processes, known as compensation mechanisms, seems to be influenced by the identity of the organ. Furthermore, studies of mutants affected in floral organ size suggest the existence of developmental compartments within different floral whorls that show distinct compensation behaviors.
PMCID: PMC2802805  PMID: 19847102
Antirrhinum majus; cell division; cell expansion; COMPACTA ÄHNLICH; compensation; floral size; FORMOSA; NITIDA; organ identity
4.  Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida 
BMC Plant Biology  2010;10:4.
Background
Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis.
Results
In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1α in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines.
Conclusions
The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development.
doi:10.1186/1471-2229-10-4
PMCID: PMC2827423  PMID: 20056000
5.  Genotype distribution of human papillomavirus (HPV) and co-infections in cervical cytologic specimens from two outpatient gynecological clinics in a region of southeast Spain 
Background
Human Papillomavirus (HPV) genotype distribution and co-infection occurrence was studied in cervical cytologic specimens from Murcia Region, (southeast Spain), to obtain information regarding the possible effect of the ongoing vaccination campaign against HPV16 and HPV18.
Methods
A total of 458 cytologic specimens were obtained from two outpatient gynecological clinics. These included 288 normal benign (N/B) specimens, 56 atypical squamous cell of undetermined significance (ASC-US), 75 low-grade squamous intraepithelial lesions (LSIL) and 39 high-grade squamous intraepithelial lesions (HSIL). HPV genotyping was performed using PCR and tube array hybridization.
Results
The most frequent genotype found was HPV16 (14.9% in N/B; 17.9% in ASC-US; 29.3% in LSIL and 33.3% HSIL). Distribution of other genotypes was heavily dependent on the cytologic diagnoses. Co-infections were found in 15.3% of N/B, 10.7% of ASC-US, 48% of LSIL and 25.6% of HSIL cases (significantly different at p < 0.001). Strikingly, in N/B diagnoses, genotypes from A5 species were found as coinfecting in all cases. Genotypes from A7 or A9 species appeared in co-infections in 56.5% and 54% respectively whereas genotypes from A6 species appeared in 25.1% of cases.
Conclusion
HPV vaccination might prevent 34.6% and 35.8% of LSIL and HSIL, respectively. Co-infection rate is dependent on both cytologic diagnosis and HPV genotype. Moreover, genotypes belonging to A5, A7 and A9 species are more often found as co-infections than genotype pertaining to A6 species. This suggests that phylogenetically related genotypes might have in common similar grades of dependency for cervical epithelium colonization.
doi:10.1186/1471-2334-9-124
PMCID: PMC2731031  PMID: 19664248

Results 1-5 (5)