PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-10 (10)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  SNiPloid: A Utility to Exploit High-Throughput SNP Data Derived from RNA-Seq in Allopolyploid Species 
High-throughput sequencing is a common approach to discover SNP variants, especially in plant species. However, methods to analyze predicted SNPs are often optimized for diploid plant species whereas many crop species are allopolyploids and combine related but divergent subgenomes (homoeologous chromosome sets). We created a software tool, SNiPloid, that exploits and interprets putative SNPs in the context of allopolyploidy by comparing SNPs from an allopolyploid with those obtained in its modern-day diploid progenitors. SNiPloid can compare SNPs obtained from a sample to estimate the subgenome contribution to the transcriptome or SNPs obtained from two polyploid accessions to search for SNP divergence.
doi:10.1155/2013/890123
PMCID: PMC3791807  PMID: 24163691
2.  An Improved Method for TAL Effectors DNA-Binding Sites Prediction Reveals Functional Convergence in TAL Repertoires of Xanthomonas oryzae Strains 
PLoS ONE  2013;8(7):e68464.
Transcription Activators-Like Effectors (TALEs) belong to a family of virulence proteins from the Xanthomonas genus of bacterial plant pathogens that are translocated into the plant cell. In the nucleus, TALEs act as transcription factors inducing the expression of susceptibility genes. A code for TALE-DNA binding specificity and high-resolution three-dimensional structures of TALE-DNA complexes were recently reported. Accurate prediction of TAL Effector Binding Elements (EBEs) is essential to elucidate the biological functions of the many sequenced TALEs as well as for robust design of artificial TALE DNA-binding domains in biotechnological applications. In this work a program with improved EBE prediction performances was developed using an updated specificity matrix and a position weight correction function to account for the matching pattern observed in a validation set of TALE-DNA interactions. To gain a systems perspective on the large TALE repertoires from X. oryzae strains, this program was used to predict rice gene targets for 99 sequenced family members. Integrating predictions and available expression data in a TALE-gene network revealed multiple candidate transcriptional targets for many TALEs as well as several possible instances of functional convergence among TALEs.
doi:10.1371/journal.pone.0068464
PMCID: PMC3711819  PMID: 23869221
3.  The Banana Genome Hub 
Banana is one of the world’s favorite fruits and one of the most important crops for developing countries. The banana reference genome sequence (Musa acuminata) was recently released. Given the taxonomic position of Musa, the completed genomic sequence has particular comparative value to provide fresh insights about the evolution of the monocotyledons. The study of the banana genome has been enhanced by a number of tools and resources that allows harnessing its sequence. First, we set up essential tools such as a Community Annotation System, phylogenomics resources and metabolic pathways. Then, to support post-genomic efforts, we improved banana existing systems (e.g. web front end, query builder), we integrated available Musa data into generic systems (e.g. markers and genetic maps, synteny blocks), we have made interoperable with the banana hub, other existing systems containing Musa data (e.g. transcriptomics, rice reference genome, workflow manager) and finally, we generated new results from sequence analyses (e.g. SNP and polymorphism analysis). Several uses cases illustrate how the Banana Genome Hub can be used to study gene families. Overall, with this collaborative effort, we discuss the importance of the interoperability toward data integration between existing information systems.
Database URL: http://banana-genome.cirad.fr/
doi:10.1093/database/bat035
PMCID: PMC3662865  PMID: 23707967
4.  Deep Sequencing Reveals Differences in the Transcriptional Landscapes of Fibers from Two Cultivated Species of Cotton 
PLoS ONE  2012;7(11):e48855.
Cotton (Gossypium) fiber is the most prevalent natural product used in the textile industry. The two major cultivated species, G. hirsutum (Gh) and G. barbadense (Gb), are allotetraploids with contrasting fiber quality properties. To better understand the molecular basis for their fiber differences, EST pyrosequencing was used to document the fiber transcriptomes at two key development stages, 10 days post anthesis (dpa), representing the peak of fiber elongation, and 22 dpa, representing the transition to secondary cell wall synthesis. The 617,000 high quality reads (89% of the total 692,000 reads) from 4 libraries were assembled into 46,072 unigenes, comprising 38,297 contigs and 7,775 singletons. Functional annotation of the unigenes together with comparative digital gene expression (DGE) revealed a diverse set of functions and processes that were partly linked to specific fiber stages. Globally, 2,770 contigs (7%) showed differential expression (>2-fold) between 10 and 22 dpa (irrespective of genotype), with 70% more highly expressed at 10 dpa, while 2,248 (6%) were differentially expressed between the genotypes (irrespective of stage). The most significant genes with differential DGE at 10 dpa included expansins and lipid transfer proteins (higher in Gb), while at 22 dpa tubulins, cellulose, and sucrose synthases showed higher expression in Gb. DGE was compared with expression data of 10 dpa-old fibers from Affymetrix microarrays. Among 543 contigs showing differential expression on both platforms, 74% were consistent in being either over-expressed in Gh (242 genes) or in Gb (161 genes). Furthermore, the unigene set served to identify 339 new SSRs and close to 21,000 inter-genotypic SNPs. Subsets of 88 SSRs and 48 SNPs were validated through mapping and added 65 new loci to a RIL genetic map. The new set of fiber ESTs and the gene-based markers complement existing available resources useful in basic and applied research for crop improvement in cotton.
doi:10.1371/journal.pone.0048855
PMCID: PMC3499527  PMID: 23166598
5.  Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L. 
PLoS ONE  2012;7(3):e32973.
Through multiple vegetative propagation cycles, clones accumulate mutations in somatic cells that are at the origin of clonal phenotypic diversity in grape. Clonal diversity provided clones such as Cabernet-Sauvignon N°470, Chardonnay N° 548 and Pinot noir N° 777 which all produce wines of superior quality. The economic impact of clonal selection is therefore very high: since approx. 95% of the grapevines produced in French nurseries originate from the French clonal selection. In this study we provide the first broad description of polymorphism in different clones of a single grapevine cultivar, Pinot noir, in the context of vegetative propagation. Genome sequencing was performed using 454 GS-FLX methodology without a priori, in order to identify and quantify for the first time molecular polymorphisms responsible for clonal variability in grapevine. New generation sequencing (NGS) was used to compare a large portion of the genome of three Pinot noir clones selected for their phenotypic differences. Reads obtained with NGS and the sequence of Pinot noir ENTAV-INRA® 115 sequenced by Velasco et al., were aligned on the PN40024 reference sequence. We then searched for molecular polymorphism between clones. Three types of polymorphism (SNPs, Indels, mobile elements) were found but insertion polymorphism generated by mobile elements of many families displayed the highest mutational event with respect to clonal variation. Mobile elements inducing insertion polymorphism in the genome of Pinot noir were identified and classified and a list is presented in this study as potential markers for the study of clonal variation. Among these, the dynamic of four mobile elements with a high polymorphism level were analyzed and insertion polymorphism was confirmed in all the Pinot clones registered in France.
doi:10.1371/journal.pone.0032973
PMCID: PMC3299709  PMID: 22427919
6.  SNiPlay: a web-based tool for detection, management and analysis of SNPs. Application to grapevine diversity projects 
BMC Bioinformatics  2011;12:134.
Background
High-throughput re-sequencing, new genotyping technologies and the availability of reference genomes allow the extensive characterization of Single Nucleotide Polymorphisms (SNPs) and insertion/deletion events (indels) in many plant species. The rapidly increasing amount of re-sequencing and genotyping data generated by large-scale genetic diversity projects requires the development of integrated bioinformatics tools able to efficiently manage, analyze, and combine these genetic data with genome structure and external data.
Results
In this context, we developed SNiPlay, a flexible, user-friendly and integrative web-based tool dedicated to polymorphism discovery and analysis. It integrates:
1) a pipeline, freely accessible through the internet, combining existing softwares with new tools to detect SNPs and to compute different types of statistical indices and graphical layouts for SNP data. From standard sequence alignments, genotyping data or Sanger sequencing traces given as input, SNiPlay detects SNPs and indels events and outputs submission files for the design of Illumina's SNP chips. Subsequently, it sends sequences and genotyping data into a series of modules in charge of various processes: physical mapping to a reference genome, annotation (genomic position, intron/exon location, synonymous/non-synonymous substitutions), SNP frequency determination in user-defined groups, haplotype reconstruction and network, linkage disequilibrium evaluation, and diversity analysis (Pi, Watterson's Theta, Tajima's D).
Furthermore, the pipeline allows the use of external data (such as phenotype, geographic origin, taxa, stratification) to define groups and compare statistical indices.
2) a database storing polymorphisms, genotyping data and grapevine sequences released by public and private projects. It allows the user to retrieve SNPs using various filters (such as genomic position, missing data, polymorphism type, allele frequency), to compare SNP patterns between populations, and to export genotyping data or sequences in various formats.
Conclusions
Our experiments on grapevine genetic projects showed that SNiPlay allows geneticists to rapidly obtain advanced results in several key research areas of plant genetic diversity. Both the management and treatment of large amounts of SNP data are rendered considerably easier for end-users through automation and integration. Current developments are taking into account new advances in high-throughput technologies.
SNiPlay is available at: http://sniplay.cirad.fr/.
doi:10.1186/1471-2105-12-134
PMCID: PMC3102043  PMID: 21545712
7.  Patterns of sequence polymorphism in the fleshless berry locus in cultivated and wild Vitis vinifera accessions 
BMC Plant Biology  2010;10:284.
Background
Unlike in tomato, little is known about the genetic and molecular control of fleshy fruit development of perennial fruit trees like grapevine (Vitis vinifera L.). Here we present the study of the sequence polymorphism in a 1 Mb grapevine genome region at the top of chromosome 18 carrying the fleshless berry mutation (flb) in order, first to identify SNP markers closely linked to the gene and second to search for possible signatures of domestication.
Results
In total, 62 regions (17 SSR, 3 SNP, 1 CAPS and 41 re-sequenced gene fragments) were scanned for polymorphism along a 3.4 Mb interval (85,127-3,506,060 bp) at the top of the chromosome 18, in both V. vinifera cv. Chardonnay and a genotype carrying the flb mutation, V. vinifera cv. Ugni Blanc mutant. A nearly complete homozygosity in Ugni Blanc (wild and mutant forms) and an expected high level of heterozygosity in Chardonnay were revealed. Experiments using qPCR and BAC FISH confirmed the observed homozygosity. Under the assumption that flb could be one of the genes involved into the domestication syndrome of grapevine, we sequenced 69 gene fragments, spread over the flb region, representing 48,874 bp in a highly diverse set of cultivated and wild V. vinifera genotypes, to identify possible signatures of domestication in the cultivated V. vinifera compartment. We identified eight gene fragments presenting a significant deviation from neutrality of the Tajima's D parameter in the cultivated pool. One of these also showed higher nucleotide diversity in the wild compartments than in the cultivated compartments. In addition, SNPs significantly associated to berry weight variation were identified in the flb region.
Conclusions
We observed the occurrence of a large homozygous region in a non-repetitive region of the grapevine otherwise highly-heterozygous genome and propose a hypothesis for its formation. We demonstrated the feasibility to apply BAC FISH on the very small grapevine chromosomes and provided a specific probe for the identification of chromosome 18 on a cytogenetic map. We evidenced genes showing putative signatures of selection and SNPs significantly associated with berry weight variation in the flb region. In addition, we provided to the community 554 SNPs at the top of chromosome 18 for the development of a genotyping chip for future fine mapping of the flb gene in a F2 population when available.
doi:10.1186/1471-2229-10-284
PMCID: PMC3022909  PMID: 21176183
8.  BLAST-EXPLORER helps you building datasets for phylogenetic analysis 
Background
The right sampling of homologous sequences for phylogenetic or molecular evolution analyses is a crucial step, the quality of which can have a significant impact on the final interpretation of the study. There is no single way for constructing datasets suitable for phylogenetic analysis, because this task intimately depends on the scientific question we want to address, Moreover, database mining softwares such as BLAST which are routinely used for searching homologous sequences are not specifically optimized for this task.
Results
To fill this gap, we designed BLAST-Explorer, an original and friendly web-based application that combines a BLAST search with a suite of tools that allows interactive, phylogenetic-oriented exploration of the BLAST results and flexible selection of homologous sequences among the BLAST hits. Once the selection of the BLAST hits is done using BLAST-Explorer, the corresponding sequence can be imported locally for external analysis or passed to the phylogenetic tree reconstruction pipelines available on the Phylogeny.fr platform.
Conclusions
BLAST-Explorer provides a simple, intuitive and interactive graphical representation of the BLAST results and allows selection and retrieving of the BLAST hit sequences based a wide range of criterions. Although BLAST-Explorer primarily aims at helping the construction of sequence datasets for further phylogenetic study, it can also be used as a standard BLAST server with enriched output. BLAST-Explorer is available at http://www.phylogeny.fr
doi:10.1186/1471-2148-10-8
PMCID: PMC2821324  PMID: 20067610
9.  The Generation Challenge Programme Platform: Semantic Standards and Workbench for Crop Science 
The Generation Challenge programme (GCP) is a global crop research consortium directed toward crop improvement through the application of comparative biology and genetic resources characterization to plant breeding. A key consortium research activity is the development of a GCP crop bioinformatics platform to support GCP research. This platform includes the following: (i) shared, public platform-independent domain models, ontology, and data formats to enable interoperability of data and analysis flows within the platform; (ii) web service and registry technologies to identify, share, and integrate information across diverse, globally dispersed data sources, as well as to access high-performance computational (HPC) facilities for computationally intensive, high-throughput analyses of project data; (iii) platform-specific middleware reference implementations of the domain model integrating a suite of public (largely open-access/-source) databases and software tools into a workbench to facilitate biodiversity analysis, comparative analysis of crop genomic data, and plant breeding decision making.
doi:10.1155/2008/369601
PMCID: PMC2375972  PMID: 18483570
10.  SAT, a flexible and optimized Web application for SSR marker development 
BMC Bioinformatics  2007;8:465.
Background
Simple Sequence Repeats (SSRs), or microsatellites, are among the most powerful genetic markers known. A common method for the development of SSR markers is the construction of genomic DNA libraries enriched for SSR sequences, followed by DNA sequencing. However, designing optimal SSR markers from bulk sequence data is a laborious and time-consuming process.
Results
SAT (SSR Analysis Tool) is a user-friendly Web application developed to minimize tedious manual operations and reduce errors. This tool facilitates the integration, analysis and display of sequence data from SSR-enriched libraries.
SAT is designed to successively perform base calling and quality evaluation of chromatograms, eliminate cloning vector, adaptors and low quality sequences, detect chimera or partially digested sequences, search for SSR motifs, cluster and assemble the redundant sequences, and design SSR primer pairs. An additional virtual PCR step establishes primer specificity. Users may modify the different parameters of each step of the SAT analysis.
Although certain steps are compulsory, such as SSR motifs search and sequence assembly, users do not have to run the entire pipeline, and they can choose selectively which steps to perform. A database allows users to store and query results, and to redo individual steps of the workflow.
Conclusion
The SAT Web application is available at , and a standalone command-line version is also freely downloadable. Users must send an email to the SAT administrator tropgene@cirad.fr to request a login and password.
doi:10.1186/1471-2105-8-465
PMCID: PMC2216045  PMID: 18047663

Results 1-10 (10)