Search tips
Search criteria

Results 1-13 (13)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication 
Nature biotechnology  2014;32(7):656-662.
The domestication of citrus, is poorly understood. Cultivated types are selections from, or hybrids of, wild progenitor species, whose identities and contributions remain controversial. By comparative analysis of a collection of citrus genomes, including a high quality haploid reference, we show that cultivated types were derived from two progenitor species. Though cultivated pummelos represent selections from a single progenitor species, C. maxima, cultivated mandarins are introgressions of C. maxima into the ancestral mandarin species, C. reticulata. The most widely cultivated citrus, sweet orange, is the offspring of previously admixed individuals, but sour orange is an F1 hybrid of pure C. maxima and C. reticulata parents, implying that wild mandarins were part of the early breeding germplasm. A wild “mandarin” from China exhibited substantial divergence from C. reticulata, suggesting the possibility of other unrecognized wild citrus species. Understanding citrus phylogeny through genome analysis clarifies taxonomic relationships and enables sequence-directed genetic improvement.
PMCID: PMC4113729  PMID: 24908277
2.  The Peculiar Landscape of Repetitive Sequences in the Olive (Olea europaea L.) Genome 
Genome Biology and Evolution  2014;6(4):776-791.
Analyzing genome structure in different species allows to gain an insight into the evolution of plant genome size. Olive (Olea europaea L.) has a medium-sized haploid genome of 1.4 Gb, whose structure is largely uncharacterized, despite the growing importance of this tree as oil crop. Next-generation sequencing technologies and different computational procedures have been used to study the composition of the olive genome and its repetitive fraction. A total of 2.03 and 2.3 genome equivalents of Illumina and 454 reads from genomic DNA, respectively, were assembled following different procedures, which produced more than 200,000 differently redundant contigs, with mean length higher than 1,000 nt. Mapping Illumina reads onto the assembled sequences was used to estimate their redundancy. The genome data set was subdivided into highly and medium redundant and nonredundant contigs. By combining identification and mapping of repeated sequences, it was established that tandem repeats represent a very large portion of the olive genome (∼31% of the whole genome), consisting of six main families of different length, two of which were first discovered in these experiments. The other large redundant class in the olive genome is represented by transposable elements (especially long terminal repeat-retrotransposons). On the whole, the results of our analyses show the peculiar landscape of the olive genome, related to the massive amplification of tandem repeats, more than that reported for any other sequenced plant genome.
PMCID: PMC4007544  PMID: 24671744
genome landscape; Olea europaea; repetitive DNA; tandem repeats; retrotransposons; assembly of NGS reads
3.  The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution 
Genome Biology  2013;14(12):R138.
The wheat genome sequence is an essential tool for advanced genomic research and improvements. The generation of a high-quality wheat genome sequence is challenging due to its complex 17 Gb polyploid genome. To overcome these difficulties, sequencing through the construction of BAC-based physical maps of individual chromosomes is employed by the wheat genomics community. Here, we present the construction of the first comprehensive physical map of chromosome 1BS, and illustrate its unique gene space organization and evolution.
Fingerprinted BAC clones were assembled into 57 long scaffolds, anchored and ordered with 2,438 markers, covering 83% of chromosome 1BS. The BAC-based chromosome 1BS physical map and gene order of the orthologous regions of model grass species were consistent, providing strong support for the reliability of the chromosome 1BS assembly. The gene space for chromosome 1BS spans the entire length of the chromosome arm, with 76% of the genes organized in small gene islands, accompanied by a two-fold increase in gene density from the centromere to the telomere.
This study provides new evidence on common and chromosome-specific features in the organization and evolution of the wheat genome, including a non-uniform distribution of gene density along the centromere-telomere axis, abundance of non-syntenic genes, the degree of colinearity with other grass genomes and a non-uniform size expansion along the centromere-telomere axis compared with other model cereal genomes. The high-quality physical map constructed in this study provides a solid basis for the assembly of a reference sequence of chromosome 1BS and for breeding applications.
PMCID: PMC4053865  PMID: 24359668
4.  A Physical Map of the Short Arm of Wheat Chromosome 1A 
PLoS ONE  2013;8(11):e80272.
Bread wheat (Triticum aestivum) has a large and highly repetitive genome which poses major technical challenges for its study. To aid map-based cloning and future genome sequencing projects, we constructed a BAC-based physical map of the short arm of wheat chromosome 1A (1AS). From the assembly of 25,918 high information content (HICF) fingerprints from a 1AS-specific BAC library, 715 physical contigs were produced that cover almost 99% of the estimated size of the chromosome arm. The 3,414 BAC clones constituting the minimum tiling path were end-sequenced. Using a gene microarray containing ∼40 K NCBI UniGene EST clusters, PCR marker screening and BAC end sequences, we arranged 160 physical contigs (97 Mb or 35.3% of the chromosome arm) in a virtual order based on synteny with Brachypodium, rice and sorghum. BAC end sequences and information from microarray hybridisation was used to anchor 3.8 Mbp of Illumina sequences from flow-sorted chromosome 1AS to BAC contigs. Comparison of genetic and synteny-based physical maps indicated that ∼50% of all genetic recombination is confined to 14% of the physical length of the chromosome arm in the distal region. The 1AS physical map provides a framework for future genetic mapping projects as well as the basis for complete sequencing of chromosome arm 1AS.
PMCID: PMC3836966  PMID: 24278269
5.  A high density physical map of chromosome 1BL supports evolutionary studies, map-based cloning and sequencing in wheat 
Genome Biology  2013;14(6):R64.
As for other major crops, achieving a complete wheat genome sequence is essential for the application of genomics to breeding new and improved varieties. To overcome the complexities of the large, highly repetitive and hexaploid wheat genome, the International Wheat Genome Sequencing Consortium established a chromosome-based strategy that was validated by the construction of the physical map of chromosome 3B. Here, we present improved strategies for the construction of highly integrated and ordered wheat physical maps, using chromosome 1BL as a template, and illustrate their potential for evolutionary studies and map-based cloning.
Using a combination of novel high throughput marker assays and an assembly program, we developed a high quality physical map representing 93% of wheat chromosome 1BL, anchored and ordered with 5,489 markers including 1,161 genes. Analysis of the gene space organization and evolution revealed that gene distribution and conservation along the chromosome results from the superimposition of the ancestral grass and recent wheat evolutionary patterns, leading to a peak of synteny in the central part of the chromosome arm and an increased density of non-collinear genes towards the telomere. With a density of about 11 markers per Mb, the 1BL physical map provides 916 markers, including 193 genes, for fine mapping the 40 QTLs mapped on this chromosome.
Here, we demonstrate that high marker density physical maps can be developed in complex genomes such as wheat to accelerate map-based cloning, gain new insights into genome evolution, and provide a foundation for reference sequencing.
PMCID: PMC4054855  PMID: 23800011
chromosome 1BL; evolution; gene space; grasses; hexaploid wheat; map-based cloning; physical mapping; sequencing; synteny
6.  Physical Mapping Integrated with Syntenic Analysis to Characterize the Gene Space of the Long Arm of Wheat Chromosome 1A 
PLoS ONE  2013;8(4):e59542.
Bread wheat (Triticum aestivum L.) is one of the most important crops worldwide and its production faces pressing challenges, the solution of which demands genome information. However, the large, highly repetitive hexaploid wheat genome has been considered intractable to standard sequencing approaches. Therefore the International Wheat Genome Sequencing Consortium (IWGSC) proposes to map and sequence the genome on a chromosome-by-chromosome basis.
Methodology/Principal Findings
We have constructed a physical map of the long arm of bread wheat chromosome 1A using chromosome-specific BAC libraries by High Information Content Fingerprinting (HICF). Two alternative methods (FPC and LTC) were used to assemble the fingerprints into a high-resolution physical map of the chromosome arm. A total of 365 molecular markers were added to the map, in addition to 1122 putative unique transcripts that were identified by microarray hybridization. The final map consists of 1180 FPC-based or 583 LTC-based contigs.
The physical map presented here marks an important step forward in mapping of hexaploid bread wheat. The map is orders of magnitude more detailed than previously available maps of this chromosome, and the assignment of over a thousand putative expressed gene sequences to specific map locations will greatly assist future functional studies. This map will be an essential tool for future sequencing of and positional cloning within chromosome 1A.
PMCID: PMC3628912  PMID: 23613713
7.  Draft Genome Sequence of Lactobacillus rossiae DSM 15814T 
Journal of Bacteriology  2012;194(19):5460-5461.
The draft genome sequence of Lactobacillus rossiae DSM 15814T (CS1, ATCC BAA-88) was determined by a whole-genome shotgun approach. Reads were assembled to a 2.9-Mb draft version. RAST genome annotation evidenced 2,723 predicted coding sequences. Many carbohydrate, amino acid, and amino acid derivative subsystem features were found.
PMCID: PMC3457226  PMID: 22965087
8.  Intraspecific sequence comparisons reveal similar rates of non-collinear gene insertion in the B and D genomes of bread wheat 
BMC Plant Biology  2012;12:155.
Polyploidization is considered one of the main mechanisms of plant genome evolution. The presence of multiple copies of the same gene reduces selection pressure and permits sub-functionalization and neo-functionalization leading to plant diversification, adaptation and speciation. In bread wheat, polyploidization and the prevalence of transposable elements resulted in massive gene duplication and movement. As a result, the number of genes which are non-collinear to genomes of related species seems markedly increased in wheat.
We used new-generation sequencing (NGS) to generate sequence of a Mb-sized region from wheat chromosome arm 3DS. Sequence assembly of 24 BAC clones resulted in two scaffolds of 1,264,820 and 333,768 bases. The sequence was annotated and compared to the homoeologous region on wheat chromosome 3B and orthologous loci of Brachypodium distachyon and rice. Among 39 coding sequences in the 3DS scaffolds, 32 have a homoeolog on chromosome 3B. In contrast, only fifteen and fourteen orthologs were identified in the corresponding regions in rice and Brachypodium, respectively. Interestingly, five pseudogenes were identified among the non-collinear coding sequences at the 3B locus, while none was found at the 3DS locus.
Direct comparison of two Mb-sized regions of the B and D genomes of bread wheat revealed similar rates of non-collinear gene insertion in both genomes with a majority of gene duplications occurring before their divergence. Relatively low proportion of pseudogenes was identified among non-collinear coding sequences. Our data suggest that the pseudogenes did not originate from insertion of non-functional copies, but were formed later during the evolution of hexaploid wheat. Some evidence was found for gene erosion along the B genome locus.
PMCID: PMC3445842  PMID: 22935214
Wheat; BAC sequencing; Homoeologous genomes; Gene duplication; Non-collinear genes; Allopolyploidy
10.  Synergistic Parasite-Pathogen Interactions Mediated by Host Immunity Can Drive the Collapse of Honeybee Colonies 
PLoS Pathogens  2012;8(6):e1002735.
The health of the honeybee and, indirectly, global crop production are threatened by several biotic and abiotic factors, which play a poorly defined role in the induction of widespread colony losses. Recent descriptive studies suggest that colony losses are often related to the interaction between pathogens and other stress factors, including parasites. Through an integrated analysis of the population and molecular changes associated with the collapse of honeybee colonies infested by the parasitic mite Varroa destructor, we show that this parasite can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer, which attains lethal levels late in the season. The de-stabilisation of DWV infection is associated with an immunosuppression syndrome, characterized by a strong down-regulation of the transcription factor NF-κB. The centrality of NF-κB in host responses to a range of environmental challenges suggests that this transcription factor can act as a common currency underlying colony collapse that may be triggered by different causes. Our results offer an integrated account for the multifactorial origin of honeybee losses and a new framework for assessing, and possibly mitigating, the impact of environmental challenges on honeybee health.
Author Summary
Honeybees are of capital importance for humans since crop production significantly depends upon pollination by these insects. In recent years, widespread collapses of honeybee colonies have been reported throughout the world; unfortunately, despite intense research efforts, the causal agents of such losses are not yet identified, although parasites seem to play a key-role. We combined molecular, field-longitudinal and theoretical approaches to describe the mechanistic basis and dynamical properties of collapse-causing interactions within the multi-parasite community infecting the honeybees. We found that the parasitic mite Varroa destructor can de-stabilise the within-host dynamics of Deformed wing virus (DWV), transforming a cryptic and vertically transmitted virus into a rapidly replicating killer. The de-stabilisation of DWV infection results from a widespread immunosuppression characterized by a strong down-regulation of a member of the gene family NF-κB. This gene family not only plays a central role in insect immunity, but is also involved in intricate cross-talks with a number of physiological and stress response pathways. This suggests that different stress factors may alter the critical balance between viral pathogens and host-defences, promoting intense viral replication in bees harbouring silent infections and subsequent colony collapse. The model we propose can potentially explain the multifactorial origin of bee losses.
PMCID: PMC3375299  PMID: 22719246
11.  Origin and Spread of Bos taurus: New Clues from Mitochondrial Genomes Belonging to Haplogroup T1 
PLoS ONE  2012;7(6):e38601.
Most genetic studies on modern cattle have established a common origin for all taurine breeds in the Near East, during the Neolithic transition about 10 thousand years (ka) ago. Yet, the possibility of independent and/or secondary domestication events is still debated and is fostered by the finding of rare mitochondrial DNA (mtDNA) haplogroups like P, Q and R. Haplogroup T1, because of its geographic distribution, has been the subject of several investigations pointing to a possible independent domestication event in Africa and suggesting a genetic contribution of African cattle to the formation of Iberian and Creole cattle. Whole mitochondrial genome sequence analysis, with its proven effectiveness in improving the resolution of phylogeographic studies, is the most appropriate tool to investigate the origin and structure of haplogroup T1.
A survey of >2200 bovine mtDNA control regions representing 28 breeds (15 European, 10 African, 3 American) identified 281 subjects belonging to haplogroup T1. Fifty-four were selected for whole mtDNA genome sequencing, and combined with ten T1 complete sequences from previous studies into the most detailed T1 phylogenetic tree available to date.
Phylogenetic analysis of the 64 T1 mitochondrial complete genomes revealed six distinct sub-haplogroups (T1a–T1f). Our data support the overall scenario of a Near Eastern origin of the T1 sub-haplogroups from as much as eight founding T1 haplotypes. However, the possibility that one sub-haplogroup (T1d) arose in North Africa, in domesticated stocks, shortly after their arrival from the Near East, can not be ruled out. Finally, the previously identified “African-derived American" (AA) haplotype turned out to be a sub-clade of T1c (T1c1a1). This haplotype was found here for the first time in Africa (Egypt), indicating that it probably originated in North Africa, reached the Iberian Peninsula and sailed to America, with the first European settlers.
PMCID: PMC3369859  PMID: 22685589
12.  Development and Evaluation of a 9K SNP Array for Peach by Internationally Coordinated SNP Detection and Validation in Breeding Germplasm 
PLoS ONE  2012;7(4):e35668.
Although a large number of single nucleotide polymorphism (SNP) markers covering the entire genome are needed to enable molecular breeding efforts such as genome wide association studies, fine mapping, genomic selection and marker-assisted selection in peach [Prunus persica (L.) Batsch] and related Prunus species, only a limited number of genetic markers, including simple sequence repeats (SSRs), have been available to date. To address this need, an international consortium (The International Peach SNP Consortium; IPSC) has pursued a coordinated effort to perform genome-scale SNP discovery in peach using next generation sequencing platforms to develop and characterize a high-throughput Illumina Infinium® SNP genotyping array platform. We performed whole genome re-sequencing of 56 peach breeding accessions using the Illumina and Roche/454 sequencing technologies. Polymorphism detection algorithms identified a total of 1,022,354 SNPs. Validation with the Illumina GoldenGate® assay was performed on a subset of the predicted SNPs, verifying ∼75% of genic (exonic and intronic) SNPs, whereas only about a third of intergenic SNPs were verified. Conservative filtering was applied to arrive at a set of 8,144 SNPs that were included on the IPSC peach SNP array v1, distributed over all eight peach chromosomes with an average spacing of 26.7 kb between SNPs. Use of this platform to screen a total of 709 accessions of peach in two separate evaluation panels identified a total of 6,869 (84.3%) polymorphic SNPs.
The almost 7,000 SNPs verified as polymorphic through extensive empirical evaluation represent an excellent source of markers for future studies in genetic relatedness, genetic mapping, and dissecting the genetic architecture of complex agricultural traits. The IPSC peach SNP array v1 is commercially available and we expect that it will be used worldwide for genetic studies in peach and related stone fruit and nut species.
PMCID: PMC3334984  PMID: 22536421
13.  The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis 
BMC Genomics  2012;13:41.
Plant microRNAs (miRNAs) are involved in post-transcriptional regulatory mechanisms of several processes, including the response to biotic and abiotic stress, often contributing to the adaptive response of the plant to adverse conditions. In addition to conserved miRNAs, found in a wide range of plant species a number of novel species-specific miRNAs, displaying lower levels of expression can be found. Due to low abundance, non conserved miRNAs are difficult to identify and isolate using conventional approaches. Conversely, deep-sequencing of small RNA (sRNA) libraries can detect even poorly expressed miRNAs.
No miRNAs from globe artichoke have been described to date. We analyzed the miRNAome from artichoke by deep sequencing four sRNA libraries obtained from NaCl stressed and control leaves and roots.
Conserved and novel miRNAs were discovered using accepted criteria. The expression level of selected miRNAs was monitored by quantitative real-time PCR. Targets were predicted and validated for their cleavage site. A total of 122 artichoke miRNAs were identified, 98 (25 families) of which were conserved with other plant species, and 24 were novel. Some miRNAs were differentially expressed according to tissue or condition, magnitude of variation after salt stress being more pronounced in roots. Target function was predicted by comparison to Arabidopsis proteins; the 43 targets (23 for novel miRNAs) identified included transcription factors and other genes, most of which involved in the response to various stresses. An unusual cleaved transcript was detected for miR393 target, transport inhibitor response 1.
The miRNAome from artichoke, including novel miRNAs, was unveiled, providing useful information on the expression in different organs and conditions. New target genes were identified. We suggest that the generation of secondary short-interfering RNAs from miR393 target can be a general rule in the plant kingdom.
PMCID: PMC3285030  PMID: 22272770

Results 1-13 (13)