PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
author:("bora, Steve")
1.  Quantitative RT-PCR based platform for rapid quantification of the transcripts of highly homologous multigene families and their members during grain development 
BMC Plant Biology  2012;12:184.
Background
Cereal storage proteins represent one of the most important sources of protein for food and feed and they are coded by multigene families. The expression of the storage protein genes exhibits a temporal fluctuation but also a response to environmental stimuli. Analysis of temporal gene expression combined with genetic variation in large multigene families with high homology among the alleles is very challenging.
Results
We designed a rapid qRT-PCR system with the aim of characterising the variation in the expression of hordein genes families. All the known D-, C-, B-, and γ-hordein sequences coding full length open reading frames were collected from commonly available databases. Phylogenetic analysis was performed and the members of the different hordein families were classified into subfamilies. Primer sets were designed to discriminate the gene expression level of whole families, subfamilies or individual members. The specificity of the primer sets was validated before successfully applying them to a cDNA population derived from developing grains of field grown Hordeum vulgare cv. Barke. The results quantify the number of moles of transcript contributed to a particular gene family and its subgroups. More over the results indicate the genotypic specific gene expression.
Conclusions
Quantitative RT-PCR with SYBR Green labelling can be a useful technique to follow gene expression levels of large gene families with highly homologues members. We showed variation in the temporal expression of genes coding for barley storage proteins. The results imply that our rapid qRT-PCR system was sensitive enough to identify the presence of alleles and their expression profiles. It can be used to check the temporal fluctuations in hordein expressions or to find differences in their response to environmental stimuli. The method could be extended for cultivar recognition as some of the sequences from the database originated from cv. Golden Promise were not expressed in the studied barley cultivar Barke although showed primer specificity with their cloned DNA sequences.
doi:10.1186/1471-2229-12-184
PMCID: PMC3492166  PMID: 23043496
SYBR Green; High homology multigene families; Transcript abundance; Hordeins
2.  The development and evaluation of single cell suspension from wheat and barley as a model system; a first step towards functional genomics application 
BMC Plant Biology  2010;10:239.
Background
The overall research objective was to develop single cell plant cultures as a model system to facilitate functional genomics of monocots, in particular wheat and barley. The essential first step towards achieving the stated objective was the development of a robust, viable single cell suspension culture from both species.
Results
We established growth conditions to allow routine culturing of somatic cells in 24 well microtiter plate format. Evaluation of the wheat and barley cell suspension as model cell system is a multi step process. As an initial step in the evaluation procedure we chose to study the impact of selected abiotic stress elicitors at the physiological, biochemical and molecular level. We report the results of osmotic stress imposed by NaCl and PEG. As proline is an important osmoprotectant of the cereal cells, colorimetric assay for proline detection was developed for small volumes (200 μl). We performed RT-PCR experiments to study the change in the expression of the genes encoding Δ1-pyrroline-5-carboxylate synthetase (P5CS) and Δ1-pyrroline-5-carboxylate reductase (PC5R) in response to abiotic stress.
Conclusions
We found differences between the wheat and barley suspension cultures, barley being more tolerant to the applied osmotic stresses. We suggested a model to explain the obtained differences in stress tolerance between the two species. The suspension cell cultures have proven useful for determining changes in proline concentration and expression level of genes (P5CS, P5CR) under various treatments and we suggest that the cells can be used as a model host system to study gene expression and regulation in monocots.
doi:10.1186/1471-2229-10-239
PMCID: PMC3017856  PMID: 21054876
3.  A pathway-specific microarray analysis highlights the complex and co-ordinated transcriptional networks of the developing grain of field-grown barley 
Journal of Experimental Botany  2008;60(1):153-167.
The aim of the study was to describe the molecular and biochemical interactions associated with amino acid biosynthesis and storage protein accumulation in the developing grains of field-grown barley. Our strategy was to analyse the transcription of genes associated with the biosynthesis of storage products during the development of field-grown barley grains using a grain-specific microarray assembled in our laboratory. To identify co-regulated genes, a distance matrix was constructed which enabled the identification of three clusters corresponding to early, middle, and late grain development. The gene expression pattern associated with the clusters was investigated using pathway-specific analysis with specific reference to the temporal expression levels of a range of genes involved mainly in the photosynthesis process, amino acid and storage protein metabolism. It is concluded that the grain-specific microarray is a reliable and cost-effective tool for monitoring temporal changes in the transcriptome of the major metabolic pathways in the barley grain. Moreover, it was sensitive enough to monitor differences in the gene expression profiles of different homologues from the storage protein families. The study described here should provide a strong complement to existing knowledge assisting further understanding of grain development and thereby provide a foundation for plant breeding towards storage proteins with improved nutritional quality.
doi:10.1093/jxb/ern270
PMCID: PMC3298879  PMID: 19015218
Amino acid metabolism; cDNA microarray; field trial; hordein; Hordeum vulgare; storage proteins
4.  Transformation of Rhizobia with Broad-Host-Range Plasmids by Using a Freeze-Thaw Method 
Several species of rhizobia were successfully transformed with broad-host-range plasmids of different replicons by using a modified freeze-thaw method. A generic binary vector (pPZP211) was maintained in Mesorhizobium loti without selection and stably inherited during nodulation. The method could extend the potential of rhizobia as a vehicle for plant transformation.
doi:10.1128/AEM.72.3.2290-2293.2006
PMCID: PMC1393188  PMID: 16517691

Results 1-4 (4)