Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin 
Proteome Science  2014;12:35.
Suberin is a recalcitrant plant biopolymer composed of a polyphenolic and a polyaliphatic domain. Although suberin contributes to a significant portion of soil organic matter, the biological process of suberin degradation is poorly characterized. It has been suggested that Streptomyces scabiei, a plant pathogenic bacterium, can produce suberin-degrading enzymes. In this study, a comparative analysis of the S. scabiei secretome from culture media supplemented or not with potato suberin was carried out to identify enzymes that could be involved in suberin degradation.
S. scabiei was grown in the presence of casein only or in the presence of both casein and suberin. Extracellular proteins from 1-, 3- and 5-day-old supernatants were analyzed by LC-MS/MS to determine their putative functions. Real-time RT-PCR was performed to monitor the expression level of genes encoding several proteins potentially involved in suberin degradation.
The effect of suberin on the extracellular protein profile of S. scabiei strain has been analyzed. A total of 246 proteins were found to be common in the data sets from both casein medium (CM) and casein-suberin medium (CSM), whereas 124 and 139 proteins were detected only in CM or CSM, respectively. The identified proteins could be divided into 19 functional groups. Two functional groups of proteins (degradation of aromatic compounds and secondary metabolism) were only associated with the CSM. A high proportion of the proteins found to be either exclusively produced, or overproduced, in presence of suberin were involved in carbohydrate metabolism. Most of the proteins included in the lipid metabolism class have been detected in CSM. Apart from lipid metabolism proteins, other identified proteins, particularly two feruloyl esterases, may also actively participate in the breakdown of suberin architecture. Both feruloyl esterase genes were overexpressed between 30 to 340 times in the presence of suberin.
This study demonstrated that the presence of suberin in S. scabiei growth medium induced the production of a wide variety of glycosyl hydrolases. Furthermore, this study has allowed the identification of extracellular enzymes that could be involved in the degradation of suberin, including enzymes of the lipid metabolism and feruloyl esterases.
PMCID: PMC4098958  PMID: 25028574
Streptomyces scabies; Common scab; Proteomics; Feruloyl esterase; Glycosyl hydrolase; Lipid metabolism; Suberinase
2.  Potato Suberin Induces Differentiation and Secondary Metabolism in the Genus Streptomyces 
Microbes and Environments  2011;27(1):36-42.
Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces.
PMCID: PMC4036036  PMID: 22129602
cell wall; common scab; membrane; secondary metabolites; Streptomyces scabiei
3.  Habituation to thaxtomin A in hybrid poplar cell suspensions provides enhanced and durable resistance to inhibitors of cellulose synthesis 
BMC Plant Biology  2010;10:272.
Thaxtomin A (TA), a phytotoxin produced by the phytopathogen Streptomyces scabies, is essential for the development of potato common scab disease. TA inhibits cellulose synthesis but its actual mode of action is unknown. Addition of TA to hybrid poplar (Populus trichocarpa x Populus deltoides) cell suspensions can activate a cellular program leading to cell death. In contrast, it is possible to habituate hybrid poplar cell cultures to grow in the presence of TA levels that would normally induce cell death. The purpose of this study is to characterize TA-habituated cells and the mechanisms that may be involved in enhancing resistance to TA.
Habituation to TA was performed by adding increasing levels of TA to cell cultures at the time of subculture over a period of 12 months. TA-habituated cells were then cultured in the absence of TA for more than three years. These cells displayed a reduced size and growth compared to control cells and had fragmented vacuoles filled with electron-dense material. Habituation to TA was associated with changes in the cell wall composition, with a reduction in cellulose and an increase in pectin levels. Remarkably, high level of resistance to TA was maintained in TA-habituated cells even after being cultured in the absence of TA. Moreover, these cells exhibited enhanced resistance to two other inhibitors of cellulose biosynthesis, dichlobenil and isoxaben. Analysis of gene expression in TA-habituated cells using an Affymetrix GeneChip Poplar Genome Array revealed that durable resistance to TA is associated with a major and complex reprogramming of gene expression implicating processes such as cell wall synthesis and modification, lignin and flavonoid synthesis, as well as DNA and chromatin modifications.
We have shown that habituation to TA induced durable resistance to the bacterial toxin in poplar cells. TA-habituation also enhanced resistance to two other structurally different inhibitors of cellulose synthesis that were found to target different proteins. Enhanced resistance was associated with major changes in the expression of numerous genes, including some genes that are involved in DNA and chromatin modifications, suggesting that epigenetic changes might be involved in this process.
PMCID: PMC3016406  PMID: 21143977
4.  Cytosine Deaminase as a Negative Selection Marker for Gene Disruption and Replacement in the Genus Streptomyces and Other Actinobacteria ▿ †  
We developed a novel negative selection system for actinobacteria based on cytosine deaminase (CodA). We constructed vectors that include a synthetic gene encoding the CodA protein from Escherichia coli optimized for expression in Streptomyces species. Gene disruption and the introduction of an unmarked in-frame deletion were successfully achieved with these vectors.
PMCID: PMC2643560  PMID: 19098221
5.  Two different signaling pathways for thaxtomin A-induced cell death in Arabidopsis and tobacco BY2 
Plant Signaling & Behavior  2009;4(2):142-144.
Thaxtomin A (TXT) is a phytotoxin produced by all plant-pathogenic Streptomyces scabies involved in the potato scab disease. Their pathogenicity was previously correlated with the production of TXT. Calcium is known to be an essential second messenger associated with pathogen-induced plant responses and cell death. We have effectively shown that in Arabidopsis thaliana cell suspensions, TXT induces an early short lived Ca2+ influx which is involved in the cell death process and other TXT-induced responses. We extended our study to Nicotiana tabacum BY2 by monitoring cell death and changes in cytosolic calcium concentration on cells expressing the apoaequorine Ca2+ reporter protein to compare the responses to TXT of the two model plants, tobacco and A. thaliana. Our investigations show that cell death in BY2 appeared to be dose dependent with a lag of sensitivity comparing to A. thaliana. Moreover, pathway leading to cell death in BY2 does not involve calcium signaling. Our results suggest that different pathways are engaged in A. thaliana and N. tabacum BY2 to achieve the same response to TXT.
PMCID: PMC2637503  PMID: 19649193
Arabidopsis thaliana; calcium; cell death; Nicotiana tabacum BY2; plant pathogen; thaxtomin A
6.  Selection and Characterization of Microorganisms Utilizing Thaxtomin A, a Phytotoxin Produced by Streptomyces scabies 
Applied and Environmental Microbiology  1998;64(11):4313-4316.
Thaxtomin A is the main phytotoxin produced by Streptomyces scabies, a causal agent of potato scab. Thaxtomin A is a yellow compound composed of 4-nitroindol-3-yl-containing 2,5-dioxopiperazine. A collection of nonpathogenic streptomycetes isolated from potato tubers and microorganisms recovered from a thaxtomin A solution were examined for the ability to grow in the presence of thaxtomin A as a sole carbon or nitrogen source. Three bacterial isolates and two fungal isolates grew in thaxtomin A-containing media. Growth of these organisms resulted in decreases in the optical densities at 400 nm of culture supernatants and in 10% reductions in the thaxtomin A concentration. The fungal isolates were identified as a Penicillium sp. isolate and a Trichoderma sp. isolate. One bacterial isolate was associated with the species Ralstonia pickettii, and the two other bacterial isolates were identified as Streptomyces sp. strains. The sequences of the 16S rRNA genes were determined in order to compare thaxtomin A-utilizing actinomycetes to the pathogenic organism S. scabies and other Streptomyces species. The nucleotide sequences of the γ variable regions of the 16S ribosomal DNA of both thaxtomin A-utilizing actinomycetes were identical to the sequence of Streptomyces mirabilis ATCC 27447. When inoculated onto potato tubers, the three thaxtomin A-utilizing bacteria protected growing plants against common scab, but the fungal isolates did not have any protective effect.
PMCID: PMC106644  PMID: 9797282

Results 1-6 (6)