Search tips
Search criteria

Results 1-10 (10)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  A dynamic meiotic SUN belt includes the zygotene-stage telomere bouquet and is disrupted in chromosome segregation mutants of maize (Zea mays L.) 
The nuclear envelope (NE) plays an essential role in meiotic telomere behavior and links the cytoplasm and nucleoplasm during homologous chromosome pairing and recombination in many eukaryotic species. Resident NE proteins including SUN (Sad-1/UNC-84) and KASH (Klarsicht/ANC-1/Syne-homology) domain proteins are known to interact forming the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that connects chromatin to the cytoskeleton. To investigate the possible cross-kingdom conservation of SUN protein functions in plant meiosis, we immunolocalized maize SUN2 using 3D microscopy of pollen mother cells from maize (Zea mays L.), a large-genome plant model with a canonical NE zygotene-stage telomere bouquet. We detected SUN2 at the nuclear periphery and found that it exhibited a distinct belt-like structure that transitioned to a half-belt during the zygotene stage and back to a full belt during and beyond the pachytene stage. The zygotene-stage half-belt SUN structure was shown by 3D immuno-FISH to include the NE-associated telomere cluster that defines the bouquet stage and coincides with homologous chromosome synapsis. Microtubule and filamentous actin staining patterns did not show any obvious belt or a retracted-like structure other than a general enrichment of tubulin staining distributed widely around the nucleus and throughout the cytoplasm. Genetic disruption of the meiotic SUN belt staining patterns with three different meiosis-specific mutants, desynaptic (dy1), asynaptic1 (as1), and divergent spindle1 (dv1) provides additional evidence for the role of the nuclear envelope in meiotic chromosome behavior. Taking into account all of the observations from this study, we propose that the maize SUN belt is directly or indirectly involved in meiotic telomere dynamics, chromosome synapsis, and possibly integration of signals and forces across the meiotic prophase nuclear envelope.
PMCID: PMC4093829  PMID: 25071797
telomere; SUN; nuclear envelope; bouquet; meiosis
2.  Defining multiple, distinct, and shared spatiotemporal patterns of DNA replication and endoreduplication from 3D image analysis of developing maize (Zea mays L.) root tip nuclei 
Plant Molecular Biology  2015;89(4-5):339-351.
Spatiotemporal patterns of DNA replication have been described for yeast and many types of cultured animal cells, frequently after cell cycle arrest to aid in synchronization. However, patterns of DNA replication in nuclei from plants or naturally developing organs remain largely uncharacterized. Here we report findings from 3D quantitative analysis of DNA replication and endoreduplication in nuclei from pulse-labeled developing maize root tips. In both early and middle S phase nuclei, flow-sorted on the basis of DNA content, replicative labeling was widely distributed across euchromatic regions of the nucleoplasm. We did not observe the perinuclear or perinucleolar replicative labeling patterns characteristic of middle S phase in mammals. Instead, the early versus middle S phase patterns in maize could be distinguished cytologically by correlating two quantitative, continuous variables, replicative labeling and DAPI staining. Early S nuclei exhibited widely distributed euchromatic labeling preferentially localized to regions with weak DAPI signals. Middle S nuclei also exhibited widely distributed euchromatic labeling, but the label was preferentially localized to regions with strong DAPI signals. Highly condensed heterochromatin, including knobs, replicated during late S phase as previously reported. Similar spatiotemporal replication patterns were observed for both mitotic and endocycling maize nuclei. These results revealed that maize euchromatin exists as an intermingled mixture of two components distinguished by their condensation state and replication timing. These different patterns might reflect a previously described genome organization pattern, with “gene islands” mostly replicating during early S phase followed by most of the intergenic repetitive regions replicating during middle S phase.
Electronic supplementary material
The online version of this article (doi:10.1007/s11103-015-0364-4) contains supplementary material, which is available to authorized users.
PMCID: PMC4631726  PMID: 26394866
Cell cycle; DNA synthesis; Grass
3.  Maize Histone H2B-mCherry: A New Fluorescent Chromatin Marker for Somatic and Meiotic Chromosome Research 
DNA and Cell Biology  2012;31(6):925-938.
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction–based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.
PMCID: PMC3378959  PMID: 22662764
4.  The Selection and Use of Sorghum (Sorghum propinquum) Bacterial Artificial Chromosomes as Cytogenetic FISH Probes for Maize (Zea mays L.) 
The integration of genetic and physical maps of maize is progressing rapidly, but the cytogenetic maps lag behind, with the exception of the pachytene fluorescence in situ hybridization (FISH) maps of maize chromosome 9. We sought to produce integrated FISH maps of other maize chromosomes using Core Bin Marker loci. Because these 1 Kb restriction fragment length polymorphism (RFLP) probes are below the FISH detection limit, we used BACs from sorghum, a small-genome relative of maize, as surrogate clones for FISH mapping. We sequenced 151 maize RFLP probes and compared in silico BAC selection methods to that of library filter hybridization and found the latter to be the best. BAC library screening, clone verification, and single-clone selection criteria are presented along with an example of transgenomic BAC FISH mapping. This strategy has been used to facilitate the integration of RFLP and FISH maps in other large-genome species.
PMCID: PMC3014715  PMID: 21234422
5.  SUNrises on the International Plant Nucleus Consortium 
Nucleus  2013;4(1):3-7.
The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes—from nuclear, to cellular, to organismal. Its main components—the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.
PMCID: PMC3585025  PMID: 23324458
RanGAP; SUN; chromocentre; nuclear envelope; nuclear pore complex; plamina; telomere
6.  Development of pachytene FISH maps for six maize chromosomes and their integration with other maize maps for insights into genome structure variation 
Chromosome Research  2012;20(4):363-380.
Integrated cytogenetic pachytene fluorescence in situ hybridization (FISH) maps were developed for chromosomes 1, 3, 4, 5, 6, and 8 of maize using restriction fragment length polymorphism marker-selected Sorghum propinquum bacterial artificial chromosomes (BACs) for 19 core bin markers and 4 additional genetic framework loci. Using transgenomic BAC FISH mapping on maize chromosome addition lines of oats, we found that the relative locus position along the pachytene chromosome did not change as a function of total arm length, indicative of uniform axial contraction along the fibers during mid-prophase for tested loci on chromosomes 4 and 5. Additionally, we cytogenetically FISH mapped six loci from chromosome 9 onto their duplicated syntenic regions on chromosomes 1 and 6, which have varying amounts of sequence divergence, using sorghum BACs homologous to the chromosome 9 loci. We found that successful FISH mapping was possible even when the chromosome 9 selective marker had no counterpart in the syntenic block. In total, these 29 FISH-mapped loci were used to create the most extensive pachytene FISH maps to date for these six maize chromosomes. The FISH-mapped loci were then merged into one composite karyotype for direct comparative analysis with the recombination nodule-predicted cytogenetic, genetic linkage, and genomic physical maps using the relative marker positions of the loci on all the maps. Marker colinearity was observed between all pair-wise map comparisons, although marker distribution patterns varied widely in some cases. As expected, we found that the recombination nodule-based predictions most closely resembled the cytogenetic map positions overall. Cytogenetic and linkage map comparisons agreed with previous studies showing a decrease in marker spacing in the peri-centromeric heterochromatin region on the genetic linkage maps. In fact, there was a general trend with most loci mapping closer towards the telomere on the linkage maps than on the cytogenetic maps, regardless of chromosome number or maize inbred line source, with just some of the telomeric loci exempted. Finally and somewhat surprisingly, we observed considerable variation between the relative arm positions of loci when comparing our cytogenetic FISH map to the B73 genomic physical maps, even where comparisons were to a B73-derived cytogenetic map. This variation is more evident between different chromosome arms, but less so within a given arm, ruling out any type of inbred-line dependent global features of linear deoxyribonucleic acid compared with the meiotic fiber organization. This study provides a means for analyzing the maize genome structure by producing new connections for integrating the cytogenetic, linkage, and physical maps of maize.
Electronic supplementary material
The online version of this article (doi:10.1007/s10577-012-9281-4) contains supplementary material, which is available to authorized users.
PMCID: PMC3391363  PMID: 22588802
maize; cytogenetic; fluorescence in-situ hybridization (FISH); pachytene; Sorghum propinquum; bacterial artificial chromosome (BAC)
7.  QTL Mapping and Candidate Gene Analysis of Telomere Length Control Factors in Maize (Zea mays L.) 
G3: Genes|Genomes|Genetics  2011;1(6):437-450.
Telomere length is a quantitative trait important for many cellular functions. Failure to regulate telomere length contributes to genomic instability, cellular senescence, cancer, and apoptosis in humans, but the functional significance of telomere regulation in plants is much less well understood. To gain a better understanding of telomere biology in plants, we used quantitative trait locus (QTL) mapping to identify genetic elements that control telomere length variation in maize (Zea mays L.). For this purpose, we measured the median and mean telomere lengths from 178 recombinant inbred lines of the IBM mapping population and found multiple regions that collectively accounted for 33–38% of the variation in telomere length. Two-way analysis of variance revealed interaction between the quantitative trait loci at genetic bin positions 2.09 and 5.04. Candidate genes within these and other significant QTL intervals, along with select genes known a priori to regulate telomere length, were tested for correlations between expression levels and telomere length in the IBM population and diverse inbred lines by quantitative real-time PCR. A slight but significant positive correlation between expression levels and telomere length was observed for many of the candidate genes, but Ibp2 was a notable exception, showing instead a negative correlation. A rad51-like protein (TEL-MD_5.04) was strongly supported as a candidate gene by several lines of evidence. Our results highlight the value of QTL mapping plus candidate gene expression analysis in a genetically diverse model system for telomere research.
PMCID: PMC3276162  PMID: 22384354
IBM; TRF; plant; telomerase; B73
8.  Structure and expression of the maize (Zea mays L.) SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants 
BMC Plant Biology  2010;10:269.
The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84) domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy.
We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5), which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses). The first (ZmSUN1, 2), here designated canonical C-terminal SUN-domain (CCSD), includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5), here designated plant-prevalent mid-SUN 3 transmembrane (PM3), includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million) in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery.
The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3 subfamily may represent a novel class of proteins with possible new and intriguing roles within the plant nuclear envelope. Expression levels for ZmSUN1-4 are consistent with basic cellular functions, whereas ZmSUN5 expression levels indicate a role in pollen. Models for possible topological arrangements of the CCSD-type and PM3-type SUN-domain proteins are presented.
PMCID: PMC3017857  PMID: 21143845
9.  Identification of G1-Regulated Genes in Normally Cycling Human Cells 
PLoS ONE  2008;3(12):e3943.
Obtaining synchronous cell populations is essential for cell-cycle studies. Methods such as serum withdrawal or use of drugs which block cells at specific points in the cell cycle alter cellular events upon re-entry into the cell cycle. Regulatory events occurring in early G1 phase of a new cell cycle could have been overlooked.
Methodology and Findings
We used a robotic mitotic shake-off apparatus to select cells in late mitosis for genome-wide gene expression studies. Two separate microarray experiments were conducted, one which involved isolation of RNA hourly for several hours from synchronous cell populations, and one experiment which examined gene activity every 15 minutes from late telophase of mitosis into G1 phase. To verify synchrony of the cell populations under study, we utilized methods including BrdU uptake, FACS, and microarray analyses of histone gene activity. We also examined stress response gene activity. Our analysis enabled identification of 200 early G1-regulated genes, many of which currently have unknown functions. We also confirmed the expression of a set of genes candidates (fos, atf3 and tceb) by qPCR to further validate the newly identified genes.
Conclusion and Significance
Genome-scale expression analyses of the first two hours of G1 in naturally cycling cells enabled the discovery of a unique set of G1-regulated genes, many of which currently have unknown functions, in cells progressing normally through the cell division cycle. This group of genes may contain future targets for drug development and treatment of human disease.
PMCID: PMC2600614  PMID: 19079774
10.  Telomeres Cluster De Novo before the Initiation of Synapsis: A Three-dimensional Spatial Analysis of Telomere Positions before and during Meiotic Prophase 
The Journal of Cell Biology  1997;137(1):5-18.
We have analyzed the progressive changes in the spatial distribution of telomeres during meiosis using three-dimensional, high resolution fluorescence microscopy. Fixed meiotic cells of maize (Zea mays L.) were subjected to in situ hybridization under conditions that preserved chromosome structure, allowing identification of stage-dependent changes in telomere arrangements. We found that nuclei at the last somatic prophase before meiosis exhibit a nonrandom, polarized chromosome organization resulting in a loose grouping of telomeres. Quantitative measurements on the spatial arrangements of telomeres revealed that, as cells passed through premeiotic interphase and into leptotene, there was an increase in the frequency of large telomere-to-telomere distances and a decrease in the bias toward peripheral localization of telomeres. By leptotene, there was no obvious evidence of telomere grouping, and the large, singular nucleolus was internally located, nearly concentric with the nucleus. At the end of leptotene, telomeres clustered de novo at the nuclear periphery, coincident with a displacement of the nucleolus to one side. The telomere cluster persisted throughout zygotene and into early pachytene. The nucleolus was adjacent to the cluster at zygotene. At the pachytene stage, telomeres rearranged again by dispersing throughout the nuclear periphery. The stagedependent changes in telomere arrangements are suggestive of specific, active telomere-associated motility processes with meiotic functions. Thus, the formation of the cluster itself is an early event in the nuclear reorganizations associated with meiosis and may reflect a control point in the initiation of synapsis or crossing over.
PMCID: PMC2139864  PMID: 9105032

Results 1-10 (10)