Search tips
Search criteria

Results 1-25 (25)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Resident fibroblast lineages mediate pressure overload–induced cardiac fibrosis 
The Journal of Clinical Investigation  2014;124(7):2921-2934.
Activation and accumulation of cardiac fibroblasts, which result in excessive extracellular matrix deposition and consequent mechanical stiffness, myocyte uncoupling, and ischemia, are key contributors to heart failure progression. Recently, endothelial-to-mesenchymal transition (EndoMT) and the recruitment of circulating hematopoietic progenitors to the heart have been reported to generate substantial numbers of cardiac fibroblasts in response to pressure overload–induced injury; therefore, these processes are widely considered to be promising therapeutic targets. Here, using multiple independent murine Cre lines and a collagen1a1-GFP fusion reporter, which specifically labels fibroblasts, we found that following pressure overload, fibroblasts were not derived from hematopoietic cells, EndoMT, or epicardial epithelial-to-mesenchymal transition. Instead, pressure overload promoted comparable proliferation and activation of two resident fibroblast lineages, including a previously described epicardial population and a population of endothelial origin. Together, these data present a paradigm for the origins of cardiac fibroblasts during development and in fibrosis. Furthermore, these data indicate that therapeutic strategies for reducing pathogenic cardiac fibroblasts should shift from targeting presumptive EndoMT or infiltrating hematopoietically derived fibroblasts, toward common pathways upregulated in two endogenous fibroblast populations.
PMCID: PMC4071409  PMID: 24937432
Angiogenesis  2012;16(2):309-327.
Sprouting of angiogenic perivascular cells is thought to be highly dependent upon autocrine and paracrine growth factor stimulation. Accordingly, we report that corneal angiogenesis induced by ectopic FGF implantation is strongly impaired in NG2/CSPG4 proteoglycan (PG) null mice known to harbour a putative deficit in pericyte proliferation/mobilization. Conversely, no significant differences were seen between wild type and knockout corneas when VEGF was used as an angiocrine factor. Perturbed responsiveness of NG2-deficient pericytes to paracrine and autocrine stimulation by several FGFs could be confirmed in cells isolated from NG2 null mice, while proliferation induced by other growth factors was equivalent in wild type and knockout cells. Identical results were obtained after siRNA-mediated knock-down of NG2 in human smooth muscle-like cell lines, as also demonstrated by the decreased levels of FGF receptor phosphorylation detected in these NG2 deprived cells. Binding assays with recombinant proteins and molecular interactions examined on live cells asserted that FGF-2 bound to NG2 in a glycosaminoglycan-independent, core protein-mediated manner and that the PG was alone capable of retaining FGF-2 on the cell membrane for subsequent receptor presentation. The use of dominant-negative mutant cells, engineered by combined transduction of NG2 deletion constructs and siRNA knock-down of the endogenous PG, allowed us to establish that the FGF co-receptor activity of NG2 is entirely mediated by its extracellular portion. In fact, forced overexpression of the NG2 ectodomain in human smooth muscle-like cells increased their FGF-2-induced mitosis and compensated for low levels of FGF receptor surface expression, in a manner equivalent to that produced by overexpression of the full-length NG2. Upon FGF binding, the cytoplasmic domain of NG2 is phosphorylated, but there is no evidence that this event elicits signal transductions that could bypass the FGFR-mediated ones. Pull-down experiments, protein-protein binding assays and flow cytometry FRET coherently revealed an elective ligand-independent association of NG2 with FGFR1 and FGFR3. The NG2 cooperation with these receptors was also corroborated functionally by the outcome of FGF-2 treatments of cells engineered to express diverse NG2/FGFR combinations. Comprehensively, the findings suggest that perivascular NG2 may serve as a dual modulator of the availability/accessibility of FGF at the cell membrane, as well as the resulting FGFR transducing activity.
PMCID: PMC3656602  PMID: 23124902
Proteoglycan; angiogenesis; FGF signalling; NG2/CSPG4; pericytes
3.  Adventitial pericyte progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury1 
Journal of vascular research  2012;50(2):134-144.
Restenosis is a major complication of coronary angioplasty, at least partly due to the fact that the origin and identity of contributing cells types is not well understood. In this study we have investigated whether pericyte-like cells or mesenchymal stem cells (MSCs) from the adventitia contribute to restenosis. We demonstrate that while cells expressing the pericyte markers NG2, PDGF-receptor-beta, and CD146 are rare in the adventitia of uninjured mouse femoral arteries, following injury their numbers strongly increase. Some of these adventitial pericyte-like cells acquire a more MSC-like phenotype (CD90+ and CD29+ are up-regulated) and also appear in the restenotic neointima. Via bone-marrow-transplantation and ex-vivo artery culture approaches we demonstrate that the pericyte-like MSCs of the injured femoral artery are not derived from the bone marrow, but originate in the adventitia itself mainly via the proliferation of resident pericyte-like cells. In summary, we have identified a population of resident adventitial pericyte-like cells or MSCs that contribute to restenosis following arterial injury. These cells are different from myofibroblasts, smooth muscle cells, and other progenitor populations that have been shown to participate in the restenotic process.
PMCID: PMC3665412  PMID: 23258211
pericytes; pericyte-like cells; mesenchymal stem cells (MSC); restenosis; adventitia
4.  The Multi-PDZ Domain Protein MUPP1 Is a Cytoplasmic Ligand for the Membrane-Spanning Proteoglycan NG2 
Journal of cellular biochemistry  2000;79(2):213-224.
A yeast two-hybrid screen was employed to identify ligands for the cytoplasmic domain of the NG2 chondroitin sulfate proteoglycan. Two overlapping cDNA clones selected in the screen are identical in sequence to a DNA segment coding for the most amino-terminal of the 13 PDZ domains found in the multi-PDZ-protein MUPP1. Antibodies made against recombinant polypeptides representing these two clones (NIP- 2 and NIP-7) are reactive with the same 250-kDa molecule recognized by anti-MUPP1 antibodies, confirming the presence of the NIP-2 and NIP-7 sequences in the MUPP1 protein. NIP-2 and NIP-7 GST fusion proteins effectively recognize NG2 in pull-down assays, demonstrating the ability of these polypeptide segments to interact with the intact proteoglycan. The fusion proteins fail to bind NG2 missing the C-terminal half of the cytoplasmic domain, emphasizing the role of the NG2 C-terminus in the interaction with MUPP1. The existence of an NG2/MUPP 1 interaction in situ is demonstrated by the ability of NG2 antibodies to co-immunoprecipitate both NG2 and MUPP1 from detergent extracts of cells expressing the two molecules. MUPP1 may serve as a multivalent scaffold that provides a means of linking NG2 with key structural and/or signaling components in the cytoplasm.
PMCID: PMC3501957  PMID: 10967549
NG2 proteoglycan; MUPP1 protein; PDZ modules; cytoplasmic scaffolding; transmembrane signaling; yeast two-hybrid screen
5.  NG2 proteoglycan promotes tumor vascularization via integrin-dependent effects on pericyte function 
Angiogenesis  2013;17:61-76.
The NG2 proteoglycan stimulates the proliferation and migration of various immature cell types, including pericytes. However, the role of NG2 in mediating pericyte/endothelial cell interaction has been less clear. In this study, we show that pericyte-specific NG2 ablation causes several structural deficits in blood vessels in intracranial B16F10 melanomas, including decreased pericyte ensheathment of endothelial cells, diminished formation of endothelial junctions, and reduced assembly of the vascular basal lamina. These deficits result in decreased tumor vessel patency, increased vessel leakiness, and increased intratumoral hypoxia. NG2-dependent mechanisms of pericyte interaction with endothelial cells are further explored in pericyte/endothelial cell co-cultures. siRNA-mediated NG2 knockdown in pericytes leads to reduced formation of pericyte/endothelial networks, reduced formation of ZO-1 positive endothelial cell junctions, and increased permeability of endothelial cell monolayers. We also show that NG2 knockdown results in loss of β1 integrin activation in endothelial cells, revealing a mechanism for NG2-dependent cross talk between pericytes and endothelial cells.
Electronic supplementary material
The online version of this article (doi:10.1007/s10456-013-9378-1) contains supplementary material, which is available to authorized users.
PMCID: PMC3898355  PMID: 23925489
Blood vessels; Co-culture systems; Endothelial cells; NG2 proteoglycan; Pericytes; β1 integrins
6.  NG2/CSPG4–collagen type VI interplays putatively involved in the microenvironmental control of tumour engraftment and local expansion 
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2–Col VI interplay as putatively involved in the regulation of the cancer cell–host microenvironment interactions sustaining sarcoma progression.
PMCID: PMC3656611  PMID: 23559515
proteoglycans; sarcoma; collagen type VI; tumour–stroma interaction; cell migration; prognostic biomarker
7.  MCP-induced protein 1 suppresses TNFα-induced VCAM-1 expression in human endothelial cells 
FEBS letters  2010;584(14):3065-3072.
Endothelial inflammation plays a critical role in the development and progression of cardiovascular disease, albeit the mechanisms need to be fully elucidated. We here report that treatment of human umbilical vein endothelial cells (HUVECs) with tumor necrosis factor (TNF) α substantially increased the expression of MCP-induced protein 1 (MCPIP1). Overexpression of MCPIP1 protected ECs against TNFα-induced endothelial activation, as characterized by the attenuation in the expression of the adhesion molecule VCAM-1 and monocyte adherence to ECs. Conversely, small interfering RNA-mediated knock down of MCPIP1 increased the expression of VCAM-1 and monocytic adherence to ECs. These studies identified MCPIP1 as a feedback control of cytokines-induced endothelial inflammation.
PMCID: PMC3587133  PMID: 20561987
MCPIP1; Endothelial cell; Inflammation; NF-κB signaling; Adhesion molecule
8.  A role for the NG2 proteoglycan in glioma progression 
Cell Adhesion & Migration  2008;2(3):192-201.
Many human gliomas carry markers characteristic of oligodendrocyte progenitor cells (such as Olig-2, PDGF alpha receptor and NG2 proteoglycan), suggesting these progenitors as the cells of origin for glioma initiation. This review considers the potential roles of the NG2 proteoglycan in glioma progression. NG2 is expressed not only by glioma cells and by oligodendrocyte progenitors, but also by pericytes associated with the tumor microvasculature. The proteoglycan may therefore promote tumor vascularization and recruitment of normal progenitors to the tumor mass, in addition to mediating expansion of the transformed cell population. Along with potentiating growth factor signaling and serving as a cell surface receptor for extracellular matrix components, NG2 also has the ability to mediate activation of β-1 integrins. These molecular interactions allow the proteoglycan to contribute to critical processes such as cell proliferation, cell motility and cell survival.
PMCID: PMC2634088  PMID: 19262111
NG2 proteoglycan; glioma progression; cell motility; cell proliferation; cell survival; tumor vascularization
Nano LIFE  2010;1(3-4):207-214.
Macrophage foam cells are key components of atherosclerotic plaque and play an important role in the progression of atherosclerosis leading to plaque rupture and thrombosis. Foam cells are emerging as attractive targets for therapeutic intervention and for imaging the progression of disease. Therefore, designing nanoparticles (NPs) targeted to macrophage foam cells in plaque is of considerable therapeutic significance. Here we report the construction of an oligonucleotide functionalized NP system with high affinity for foam cells. Nanoparticles functionalized with a 23-mer poly-Guanine (polyG) oligonucleotide are specifically recognized by the scavenger receptors on lipid-laden foam cells in vitro and ex vivo. The enhanced uptake of polyG-functionalized NPs by foam cells is inhibited in the presence of acetylated-LDL, a known ligand of scavenger receptors. Since polyG oligonucleotides are stable in serum and are unlikely to induce an immune response, their use for scavenger receptor-mediated targeting of macrophage foam cells provides a strategy for targeting atherosclerotic lesions.
PMCID: PMC3484886  PMID: 23125876
Atherosclerosis; Nanoparticles; polyG; foam cells; scavenger receptors
10.  Cell proliferation along vascular islands during microvascular network growth 
BMC Physiology  2012;12:7.
Observations in our laboratory provide evidence of vascular islands, defined as disconnected endothelial cell segments, in the adult microcirculation. The objective of this study was to determine if vascular islands are involved in angiogenesis during microvascular network growth.
Mesenteric tissues, which allow visualization of entire microvascular networks at a single cell level, were harvested from unstimulated adult male Wistar rats and Wistar rats 3 and 10 days post angiogenesis stimulation by mast cell degranulation with compound 48/80. Tissues were immunolabeled for PECAM and BRDU. Identification of vessel lumens via injection of FITC-dextran confirmed that endothelial cell segments were disconnected from nearby patent networks. Stimulated networks displayed increases in vascular area, length density, and capillary sprouting. On day 3, the percentage of islands with at least one BRDU-positive cell increased compared to the unstimulated level and was equal to the percentage of capillary sprouts with at least one BRDU-positive cell. At day 10, the number of vascular islands per vascular area dramatically decreased compared to unstimulated and day 3 levels.
These results show that vascular islands have the ability to proliferate and suggest that they are able to incorporate into the microcirculation during the initial stages of microvascular network growth.
PMCID: PMC3493275  PMID: 22720777
Angiogenesis; Microcirculation; Mesentery; Proliferation; Endothelial cell
11.  Ablation of NG2 Proteoglycan Leads to Deficits in Brown Fat Function and to Adult Onset Obesity 
PLoS ONE  2012;7(1):e30637.
Obesity is a major health problem worldwide. We are studying the causes and effects of obesity in C57Bl/6 mice following genetic ablation of NG2, a chondroitin sulfate proteoglycan widely expressed in progenitor cells and also in adipocytes. Although global NG2 ablation delays early postnatal adipogenesis in mouse skin, adult NG2 null mice are paradoxically heavier than wild-type mice, exhibiting larger white fat deposits. This adult onset obesity is not due to NG2-dependent effects on CNS function, since specific ablation of NG2 in oligodendrocyte progenitors yields the opposite phenotype; i.e. abnormally lean mice. Metabolic analysis reveals that, while activity and food intake are unchanged in global NG2 null mice, O2 consumption and CO2 production are decreased, suggesting a decrease in energy expenditure. Since brown fat plays important roles in regulating energy expenditure, we have investigated brown fat function via cold challenge and high fat diet feeding, both of which induce the adaptive thermogenesis that normally occurs in brown fat. In both tests, body temperatures in NG2 null mice are reduced compared to wild-type mice, indicating a deficit in brown fat function in the absence of NG2. In addition, adipogenesis in NG2 null brown pre-adipocytes is dramatically impaired compared to wild-type counterparts. Moreover, mRNA levels for PR domain containing 16 (PRDM16) and peroxisome proliferator-activated receptor γ coactivator (PGC)1-α, proteins important for brown adipocyte differentiation, are decreased in NG2 null brown fat deposits in vivo and NG2 null brown pre-adipocytes in vitro. Altogether, these results indicate that brown fat dysfunction in NG2 null mice results from deficits in the recruitment and/or development of brown pre-adipocytes. As a consequence, obesity in NG2 null mice may occur due to disruptions in brown fat-dependent energy homeostasis, with resulting effects on lipid storage in white adipocytes.
PMCID: PMC3266271  PMID: 22295099
12.  Non-stem cell origin for oligodendroglioma 
Cancer cell  2010;18(6):669-682.
Malignant astrocytic brain tumors are among the most lethal cancers. Quiescent, and therapy-resistant neural stem cell (NSC)-like cells in astrocytomas are likely to contribute to poor outcome. Malignant oligodendroglial brain tumors, in contrast, are therapy-sensitive. Using magnetic resonance imaging (MRI) and detailed developmental analyses, we demonstrated that murine oligodendroglioma cells show characteristics of oligodendrocyte progenitor cells (OPCs), are therapy-sensitive; and that OPC rather than NSC markers enriched for tumor formation. MRI of human oligodendroglioma also suggested a white-matter (WM) origin, with markers for OPCs rather than NSCs similarly enriching for tumor formation. Our results suggest that oligodendroglioma cells show hallmarks of OPCs, and that a progenitor rather than a NSC origin underlies improved prognosis in patients with this tumor.
PMCID: PMC3031116  PMID: 21156288
13.  Reduced inflammation accompanies diminished myelin damage and repair in the NG2 null mouse spinal cord 
Multiple sclerosis (MS) is a demyelinating disease in which blood-derived immune cells and activated microglia damage myelin in the central nervous system. While oligodendrocyte progenitor cells (OPCs) are essential for generating oligodendrocytes for myelin repair, other cell types also participate in the damage and repair processes. The NG2 proteoglycan is expressed by OPCs, pericytes, and macrophages/microglia. In this report we investigate the effects of NG2 on these cell types during spinal cord demyelination/remyelination.
Demyelinated lesions were created by microinjecting 1% lysolecithin into the lumbar spinal cord. Following demyelination, NG2 expression patterns in wild type mice were studied via immunostaining. Immunolabeling was also used in wild type and NG2 null mice to compare the extent of myelin damage, the kinetics of myelin repair, and the respective responses of OPCs, pericytes, and macrophages/microglia. Cell proliferation was quantified by studies of BrdU incorporation, and cytokine expression levels were evaluated using qRT-PCR.
The initial volume of spinal cord demyelination in wild type mice is twice as large as in NG2 null mice. However, over the ensuing 5 weeks there is a 6-fold improvement in myelination in wild type mice, versus only a 2-fold improvement in NG2 null mice. NG2 ablation also results in reduced numbers of each of the three affected cell types. BrdU incorporation studies reveal that reduced cell proliferation is an important factor underlying NG2-dependent decreases in each of the three key cell populations. In addition, NG2 ablation reduces macrophage/microglial cell migration and shifts cytokine expression from a pro-inflammatory to anti-inflammatory phenotype.
Loss of NG2 expression leads to decreased proliferation of OPCs, pericytes, and macrophages/microglia, reducing the abundance of all three cell types in demyelinated spinal cord lesions. As a result of these NG2-dependent changes, the course of demyelination and remyelination in NG2 null mice differs from that seen in wild type mice, with both myelin damage and repair being reduced in the NG2 null mouse. These studies identify NG2 as an important factor in regulating myelin processing, suggesting that therapeutic targeting of the proteoglycan might offer a means of manipulating cell behavior in demyelinating diseases.
PMCID: PMC3229456  PMID: 22078261
Inflammation; myelin repair; NG2 ablation; oligodendrocyte progenitors; pericytes; macrophages
Developmental biology  2010;344(2):1035-1046.
Tightly-regulated crosstalk between endothelial cells and pericytes is required for formation and maintenance of functional blood vessels. When the NG2 proteoglycan is absent from pericyte surfaces, vascularization of syngeneic tumors growing in the C57Bl/6 mouse brain is aberrant in several respects, resulting in retardation of tumor progression. In the NG2 null mouse brain, pericyte investment of the tumor vascular endothelium is reduced, causing deficiencies in both pericyte and endothelial cell maturation, as well as reduced basal lamina assembly. While part of this deficit may be due to the previously-identified role of NG2 in β1 integrin-dependent periyte/endothelial cell crosstalk, the ablation of NG2 also appears responsible for loss of collagen VI anchorage, in turn leading to reduced collagen IV deposition. Poor functionality of tumor vessels in NG2 null brain is reflected by reduced vessel patency and increased vessel leakiness, resulting in large increases in tumor hypoxia. These findings demonstrate the importance of NG2-dependent pericyte/endothelial cell interaction in the development and maturation of tumor blood vessels, identifying NG2 as a potential target for anti-angiogenic cancer therapy.
PMCID: PMC3197744  PMID: 20599895
blood vessel maturation; pericyte/endothelial cell interaction; tumor vascularization; tumor progression; NG2 proteoglycan; NG2 null mouse
15.  Lymphatic/Blood Endothelial Cell Connections at the Capillary Level in Adult Rat Mesentery 
Analyses of microvascular networks with traditional tracer filling techniques suggest that the blood and lymphatic systems are distinct without direct communications, yet involvement of common growth factors during angiogenesis and lymphangiogenesis suggest that interactions at the capillary level are possible. In order to investigate the structural basis for lymphatic/blood endothelial cell connections during normal physiological growth, the objective of this study was to characterize the spatial relations between lymphatic and blood capillaries in adult rat mesenteric tissue. Using immunohistochemical methods, adult male Wistar rat mesenteric tissues were labeled with antibodies against PECAM (an endothelial marker) and LYVE-1, Prox-1, or Podoplanin (lymphatic endothelial markers) or NG2 (a pericyte marker). Positive PECAM labeling identified apparent lymphatic/blood endothelial cell connections at the capillary level characterized by direct contact or direct alignment with one another. In PECAM labeled networks, a subset of the lymphatic and blood capillary blind ends were connected with each other. Intravital imaging of FITC-Albumin injected through the femoral vein did not identify lymphatic vessels. At contact sites, lymphatic endothelial markers did not extend along blood capillary segments. However, PECAM positive lymphatic sprouts, structurally similar to blood capillary sprouts, lacked observable lymphatic marker labeling. These observations suggest that non-lumenal lymphatic/blood endothelial cell interactions exist in unstimulated adult microvascular networks and highlight the potential for lymphatic/blood endothelial cell plasticity.
PMCID: PMC3000855  PMID: 20648570
Microcirculation; Angiogenesis; Lymphangiogenesis; Endothelial Cell
Neuroscience  2009;166(1):185-194.
The NG2 proteoglycan has been shown to promote proliferation and motility in a variety of cell types. The presence of NG2 on oligodendrocyte progenitor cells (OPCs) suggests that the proteoglycan may be a factor in expansion of the OPC pool to fill the entire central nervous system prior to OPC differentiation to form myelinating oligodendrocytes. Comparisons of postnatal cerebellar myelination in wild type and NG2 null mice reveal reduced numbers of OPCs in developing white matter of the NG2 null mouse. Quantification of BrdU incorporation shows that reduced proliferation is a key reason for this OPC shortage, with the peak of OPC proliferation delayed by 4-5 days in the absence of NG2. As a result of the subnormal pool of OPCs, there is also a delay in production of mature oligodendrocytes and myelinating processes in the NG2 null cerebellum. NG2 may promote OPC proliferation via enhancement of growth factor signaling or mediation of OPC interaction with unmyelinated axons.
PMCID: PMC2847446  PMID: 20006679
oligodendrocyte progenitors; cell proliferation; differentiation; myelination; NG2 proteoglycan; cerebellum
18.  An Adamantyl-Substituted Retinoid-Derived Molecule That Inhibits Cancer Cell Growth and Angiogenesis by Inducing Apoptosis and Binds to Small Heterodimer Partner Nuclear Receptor: Effects of Modifying Its Carboxylate Group on Apoptosis, Proliferation, and Protein-Tyrosine Phosphatase Activity 
Journal of medicinal chemistry  2007;50(11):2622-2639.
Apoptotic and antiproliferative activities of small heterodimer partner (SHP) nuclear receptor ligand (E)-4-[3′-(1-adamantyl)-4′-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC), which was derived from 6-[3′-(1-adamantyl)-4′-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN), and several carboxyl isosteric or hydrogen bond-accepting analogues were examined. 3-Cl-AHPC continued to be the most effective apoptotic agent, whereas tetrazole, thiazolidine-2,4-dione, methyldinitrile, hydroxamic acid, boronic acid, 2-oxoaldehyde, and ethyl phosphonic acid hydrogen bond-acceptor analogues were inactive or less efficient inducers of KG-1 acute myeloid leukemia and MDA-MB-231 breast, H292 lung, and DU-145 prostate cancer cell apoptosis. Similarly, 3-Cl-AHPC was the most potent inhibitor of cell proliferation. 4-[3′-(1-Adamantyl)-4′-hydroxyphenyl]-3-chlorophenyltetrazole, (2E)-5-{2-[3′-(1-adamantyl)-2-chloro-4′-hydroxy-4-biphenyl]-ethenyl}-1H-tetrazole, 5-{4-[3′-(1-adamantyl)-4′-hydroxyphenyl]-3-chlorobenzylidene}thiazolidine-2,4-dione, and (3E)-4-[3′-(1-adamantyl)-2-chloro-4′-hydroxy-4-biphenyl]-2-oxobut-3-enal were very modest inhibitors of KG-1 proliferation. The other analogues were minimal inhibitors. Fragment-based QSAR analyses relating the polar termini with cancer cell growth inhibition revealed that length and van der Waals electrostatic surface potential were the most influential features on activity. 3-Cl-AHPC and the 3-chlorophenyltetrazole and 3-chlorobenzylidenethiazolidine-2,4-dione analogues were also able to inhibit SHP-2 protein-tyrosine phosphatase, which is elevated in some leukemias. 3-Cl-AHPC at 1.0 µM induced human microvascular endothelial cell apoptosis but did not inhibit cell migration or tube formation.
PMCID: PMC2528874  PMID: 17489579
19.  Early contribution of pericytes to angiogenic sprouting and tube formation* 
Angiogenesis  2003;6(3):241-249.
Immunostaining with endothelial and pericyte markers was used to evaluate the cellular composition of angiogenic sprouts in several types of tumors and in the developing retina. Confocal microscopy revealed that, in addition to conventional endothelial tubes heavily invested by pericytes, all tissues contained small populations of endothelium-free pericyte tubes in which nerve/glial antigen 2 (NG2) positive, platelet-derived growth factor beta (PDGF β) receptor-positive perivascular cells formed the lumen of the microvessel. Perfusion of tumor-bearing mice with FITC-dextran, followed by immunohistochemical staining of tumor vasculature, demonstrated direct apposition of pericytes to FITC-dextran in the lumen, confirming functional connection of the pericyte tube to the circulation. Transplantation of prostate and mammary tumor fragments into NG2-null mice led to the formation of tumor microvasculature that was invariably NG2-negative, demonstrating that pericytes associated with tumor microvessels are derived from the host rather than from the conversion of tumor cells to a pericyte phenotype. The existence of pericyte tubes reflects the early participation of pericytes in the process of angiogenic sprouting. The ability to study these precocious contributions of pericytes to neovascularization depends heavily on the use of NG2 and PDGF β-receptor as reliable early markers for activated pericytes.
PMCID: PMC1371062  PMID: 15041800
angiogenesis; endothelium; neovascularization; NG2; PDGF β-receptor; pericyte; sprout; tube; tumor; transplantation
20.  Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan 
Angiogenesis  2004;7(3):269-276.
The NG2 proteoglycan is expressed by nascent pericytes during the early stages of angiogenesis. To investigate the functional role of NG2 in neovascularization, we have compared pathological retinal and corneal angiogenesis in wild type and NG2 null mice. During ischemic retinal neovascularization, ectopic vessels protruding into the vitreous occur twice as frequently in wild type retinas as in NG2 null retinas. In the NG2 knock-out retina, proliferation of both pericytes and endothelial cells is significantly reduced, and the pericyte:endothelial cell ratio falls to 0.24 from the wild type value of 0.86. Similarly, bFGF-induced angiogenesis is reduced more than four-fold in the NG2 null cornea compared to that seen in the wild type retina. Significantly, NG2 antibody is effective in reducing angiogenesis in the wild type cornea, suggesting that the proteoglycan can be an effective target for anti-angiogenic therapy. These experiments therefore demonstrate both the functional importance of NG2 in pericyte development and the feasibility of using pericytes as anti-angiogenic targets.
PMCID: PMC1350818  PMID: 15609081
angiogenesis; cornea; endothelium; model; mural; neovascularization; NG2; pericyte; retina; targeting
21.  Differential phosphorylation of NG2 proteoglycan by ERK and PKCα helps balance cell proliferation and migration 
The Journal of Cell Biology  2007;178(1):155-165.
Two distinct Thr phosphorylation events within the cytoplasmic domain of the NG2 proteoglycan help regulate the cellular balance between proliferation and motility. Protein kinase Cα mediates the phosphorylation of NG2 at Thr2256, resulting in enhanced cell motility. Extracellular signal–regulated kinase phosphorylates NG2 at Thr2314, stimulating cell proliferation. The effects of NG2 phosphorylation on proliferation and motility are dependent on β1-integrin activation. Differential cell surface localization of the two distinctly phosphorylated forms of NG2 may be the mechanism by which the NG2–β1-integrin interaction promotes proliferation in one case and motility in the other. NG2 phosphorylated at Thr2314 colocalizes with β1-integrin on microprotrusions from the apical cell surface. In contrast, NG2 phosphorylated at Thr2256 colocalizes with β1-integrin on lamellipodia at the leading edges of cells. Thus, phosphorylation and the resulting site of NG2–integrin localization may determine the specific downstream effects of integrin signaling.
PMCID: PMC2064431  PMID: 17591920
22.  Analysis of axonal regeneration in the central and peripheral nervous systems of the NG2-deficient mouse 
BMC Neuroscience  2007;8:80.
The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve.
We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice.
Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice.
These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury.
PMCID: PMC2100060  PMID: 17900358
23.  NG2 Proteoglycan Promotes Endothelial Cell Motility and Angiogenesis via Engagement of Galectin-3 and α3β1 Integrin 
Molecular Biology of the Cell  2004;15(8):3580-3590.
The NG2 proteoglycan is expressed by microvascular pericytes in newly formed blood vessels. We have used in vitro and in vivo models to investigate the role of NG2 in cross-talk between pericytes and endothelial cells (EC). Binding of soluble NG2 to the EC surface induces cell motility and multicellular network formation in vitro and stimulates corneal angiogenesis in vivo. Biochemical data demonstrate the involvement of both galectin-3 and α3β1 integrin in the EC response to NG2 and show that NG2, galectin-3, and α3β1 form a complex on the cell surface. Transmembrane signaling via α3β1 is responsible for EC motility and morphogenesis in this system. Galectin-3–dependent oligomerization may potentiate NG2-mediated activation of α3β1. In conjunction with recent studies demonstrating the early involvement of pericytes in angiogenesis, these data suggest that pericyte-derived NG2 is an important factor in promoting EC migration and morphogenesis during the early stages of neovascularization.
PMCID: PMC491820  PMID: 15181153
24.  Cytoskeletal Reorganization Induced by Engagement of the NG2 Proteoglycan Leads to Cell Spreading and Migration 
Molecular Biology of the Cell  1999;10(10):3373-3387.
Cells expressing the NG2 proteoglycan can attach, spread, and migrate on surfaces coated with NG2 mAbs, demonstrating that engagement of NG2 can trigger the cytoskeletal rearrangements necessary for changes in cell morphology and motility. Engagement of different epitopes of the proteoglycan results in distinct forms of actin reorganization. On mAb D120, the cells contain radial actin spikes characteristic of filopodial extension, whereas on mAb N143, the cells contain cortical actin bundles characteristic of lamellipodia. Cells that express NG2 variants lacking the transmembrane and cytoplasmic domains are unable to spread or migrate on NG2 mAb-coated surfaces, indicating that these portions of the molecule are essential for NG2-mediated signal transduction. Cells expressing an NG2 variant lacking the C-terminal half of the cytoplasmic domain can still spread normally on mAbs D120 and N143, suggesting that the membrane-proximal cytoplasmic segment is responsible for this process. In contrast, this variant migrates poorly on mAb D120 and exhibits abnormal arrays of radial actin filaments decorated with fascin during spreading on this mAb. The C-terminal portion of the NG2 cytoplasmic domain, therefore, may be involved in regulating molecular events that are crucial for cell motility.
PMCID: PMC25605  PMID: 10512873
25.  Early vascular deficits are correlated with delayed mammary tumorigenesis in the MMTV-PyMT transgenic mouse following genetic ablation of the NG2 proteoglycan 
The neuron-glial antigen 2 (NG2) proteoglycan promotes pericyte recruitment and mediates pericyte interaction with endothelial cells. In the absence of NG2, blood vessel development is negatively impacted in several pathological models. Our goal in this study was to determine the effect of NG2 ablation on the early development and function of blood vessels in mammary tumors in the mammary tumor virus-driven polyoma middle T (MMTV-PyMT) transgenic mouse, and to correlate these vascular changes with alterations in mammary tumor growth.
Three different tumor paradigms (spontaneous tumors, transplanted tumors, and orthotopic allografts of tumor cell lines) were used to investigate the effects of NG2 ablation on breast cancer progression in the MMTV-PyMT transgenic mouse. In addition to examining effects of NG2 ablation on mammary tumor growth, we also investigated effects on the structure and function of tumor vasculature.
Ablation of NG2 led to reduced early progression of spontaneous, transplanted, and orthotopic allograft mammary tumors. NG2 was not expressed by the mammary tumor cells themselves, but instead was found on three components of the tumor stroma. Microvascular pericytes, myeloid cells, and adipocytes were NG2-positive in both mouse and human mammary tumor stroma. The effect of NG2 on tumor progression therefore must be stromal in nature. Ablation of NG2 had several negative effects on early development of the mammary tumor vasculature. In the absence of NG2, pericyte ensheathment of endothelial cells was reduced, along with reduced pericyte maturation, reduced sprouting of endothelial cells, reduced assembly of the vascular basal lamina, and reduced tumor vessel diameter. These early deficits in vessel structure are accompanied by increased vessel leakiness, increased tumor hypoxia, and decreased tumor growth. NG2 ablation also diminishes the number of tumor-associated and TEK tyrosine kinase endothelial (Tie2) expressing macrophages in mammary tumors, providing another possible mechanism for reducing tumor vascularization and growth.
These results emphasize the importance of NG2 in mediating pericyte/endothelial cell communication that is required for proper vessel maturation and function. In the absence of normal pericyte/endothelial cell interaction, poor vascular function results in diminished early progression of mammary tumors.
PMCID: PMC3446402  PMID: 22531600

Results 1-25 (25)