Search tips
Search criteria

Results 1-9 (9)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Pien Tze Huang Inhibits Hypoxia-Induced Angiogenesis via HIF-1α/VEGF-A Pathway in Colorectal Cancer 
Hypoxia-induced angiogenesis plays an important role in the development and metastasis of solid tumors and is highly regulated by HIF-1α/VEGF-A pathway. Therefore, inhibiting tumor angiogenesis via suppression of HIF-1α/VEGF-A signaling represents a promising strategy for anticancer treatment. As a traditional Chinese medicine formula, Pien Tze Huang (PZH) has long been used as a folk remedy for cancer in China and Southeast Asia. Previously, we reported that PZH inhibits colorectal cancer (CRC) growth both in vivo and in vitro. To elucidate the antitumor mechanisms of PZH, in the present study we used human umbilical vein endothelial cells (HUVEC) and colorectal carcinoma HCT-8 cells to evaluate the effects of PZH on hypoxia-induced angiogenesis and investigated the underlying molecular mechanisms. We found that PZH could inhibit hypoxia-induced migration and tube formation of HUVEC cells in a dose-dependent manner, although the low concentrations of PZH had no effect on HUVEC viability. Moreover, PZH inhibited hypoxia-induced activation of HIF-1α signaling and the expression of VEGF-A and/or VEGFR2 in both HCT-8 and HUVEC cells. Collectively, our findings suggest that PZH can inhibit hypoxia-induced tumor angiogenesis via suppression of HIF-1α/VEGF-A pathway.
PMCID: PMC4310443  PMID: 25649293
2.  Pien Tze Huang Overcomes Multidrug Resistance and Epithelial-Mesenchymal Transition in Human Colorectal Carcinoma Cells via Suppression of TGF-β Pathway 
The traditional Chinese medicine formula Pien Tze Huang (PZH) has long been used as a folk remedy for cancer. To elucidate the mode of action of PZH against cancer, in the present study we used a 5-FU resistant human colorectal carcinoma cell line (HCT-8/5-FU) to evaluate the effects of PZH on multidrug resistance (MDR) and epithelial-mesenchymal transition (EMT) as well as the activation of TGF-β pathway. We found that PZH dose-dependently inhibited the viability of HCT-8/5-FU cells which were insensitive to treatment of 5-FU and ADM, demonstrating the ability of PZH to overcome chemoresistance. Furthermore, PZH increased the intercellular accumulation of Rhodamine-123 and downregulated the expression of ABCG2 in HCT-8/5-FU cells. In addition, drug resistance induced the process of EMT in HCT-8 cells as evidenced by EMT-related morphological changes and alteration in the expression of EMT-regulatory factors, which however was neutralized by PZH treatment. Moreover, PZH inhibited MDR/EMT-enhanced migration and invasion capabilities of HCT-8 cells in a dose-dependent manner and suppressed MDR-induced activation of TGF-β signaling in HCT-8/5-FU cells. Taken together, our study suggests that PZH can effectively overcome MDR and inhibit EMT in human colorectal carcinoma cells via suppression of the TGF-β pathway.
PMCID: PMC4253702  PMID: 25505925
3.  Epidemiology of Acute Pancreatitis in Hospitalized Children in the United States from 2000–2009 
PLoS ONE  2014;9(5):e95552.
Single-center studies suggest an increasing incidence of acute pancreatitis (AP) in children. Our specific aims were to (i) estimate the recent secular trends, (ii) assess the disease burden, and (iii) define the demographics and comorbid conditions of AP in hospitalized children within the United States.
We used the Healthcare Cost and Utilization Project Kids’ Inpatient Database, Agency for Healthcare Research and Quality for the years 2000 to 2009. Extracted data were weighted to generate national-level estimates. We used the Cochrane-Armitage test to analyze trends; cohort-matching to evaluate the association of AP and in-hospital mortality, length of stay, and charges; and multivariable logistic regression to test the association of AP and demographics and comorbid conditions.
We identified 55,012 cases of AP in hospitalized children (1–20 years of age). The incidence of AP increased from 23.1 to 34.9 (cases per 10,000 hospitalizations per year; P<0.001) and for all-diagnoses 38.7 to 61.1 (P<0.001). There was an increasing trend in the incidence of both primary and all-diagnoses of AP (P<0.001). In-hospital mortality decreased (13.1 to 7.6 per 1,000 cases, P<0.001), median length of stay decreased (5 to 4 days, P<0.001), and median charges increased ($14,956 to $22,663, P<0.001). Children with AP compared to those without the disease had lower in-hospital mortality (adjusted odds ratio, aOR 0.86, 95% CI, 0.78–0.95), longer lengths of stay (aOR 2.42, 95% CI, 2.40–2.46), and higher charges (aOR 1.62, 95% CI, 1.59–1.65). AP was more likely to occur in children older than 5 years of age (aORs 2.81 to 5.25 for each 5-year age interval). Hepatobiliary disease was the comorbid condition with the greatest association with AP.
These results demonstrate a rising incidence of AP in hospitalized children. Despite improvements in mortality and length of stay, hospitalized children with AP have significant morbidity.
PMCID: PMC4012949  PMID: 24805879
4.  Spica Prunellae extract inhibits the proliferation of human colon carcinoma cells via the regulation of the cell cycle 
Oncology Letters  2013;6(4):1123-1127.
Spica Prunellae has long been used as a significant component in numerous traditional Chinese medicine (TCM) formulas to clinically treat cancers. Previously, Spica Prunellae was shown to promote cancer cell apoptosis and inhibit angiogenesis in vivo and in vitro. To further elucidate the precise mechanism of its tumoricidal activity, the effect of the ethanol extract of Spica Prunellae (EESP) on the proliferation of human colon carcinoma HT-29 cells was elucidated and the underlying molecular mechanisms were investigated. The proliferation of HT-29 cells was evaluated using 3-(4, 5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and colony formation analyses. The cell cycle was determined using fluorescence-activated cell sorting (FACS) with propidium iodide (PI) staining. The mRNA and protein expression of cyclin-dependent kinase 4 (CDK4) and cyclin D1 was examined using RT-PCR and western blotting, respectively. EESP was observed to inhibit HT-29 viability and survival in a dose- and time-dependent manner. Furthermore, EESP treatment blocked G1/S cell cycle progression and reduced the expression of pro-proliferative cyclin D1 and CDK4 at the transcriptional and translational levels. Altogether, these data suggest that the inhibition of cell proliferation via G1/S cell cycle arrest may be one of the mechanisms through which Spica Prunellae treats cancer.
PMCID: PMC3796400  PMID: 24137475
Spica Prunellae; colorectal cancer; herbal medicine; proliferation; cell cycle
5.  Qing Hua Chang Yin attenuates lipopolysaccharide-induced inflammatory response in human intestinal cells by inhibiting NF-κB activation 
Ulcerative colitis (UC) is a major form of inflammatory bowel disease (IBD), which is tightly regulated by the nuclear factor κB (NF-κB) pathway. Thus, the suppression of NF-κB signaling may provide a promising strategy for the treatment of UC. Qing Hua Chang Yin (QHCY) is a traditional Chinese formulation, which has been used for a number of years to clinically treat UC. However, little is known with regard to its anti-inflammatory properties. In the present study, lipopolysaccharide (LPS)-stimulated Caco-2 cells were used as an in vitro inflammatory model of the human intestinal epithelium to evaluate the anti-inflammatory effects of QHCY and its underlying molecular mechanisms. We observed that QHCY inhibited the inflammatory response in intestinal epithelial cells as it significantly and concentration-dependently reduced the LPS-induced secretion of pro-inflammatory TNF-α and IL-8 in Caco-2 cells. Furthermore, QHCY treatment inhibited the phosphorylation of IκB and the nuclear translocation of NF-κB in Caco-2 cells in a concentration-dependent manner, indicating that QHCY suppressed the activation of the NF-κB signaling pathway. Collectively, our results suggest that the inhibition of NF-κB-mediated inflammation may constitute a potential mechanism by which QHCY treats UC.
PMCID: PMC3735875  PMID: 23935744
Qing Hua Chang Yin; traditional Chinese medicine; ulcerative colitis; inflammation; NF-κB pathway
6.  Acute pancreatitis: Manifestation of acute HIV infection in an adolescent 
Pancreatitis in the pediatric age group is not as common as in adults. Etiologies are various and differ from those in adults. Although infectious etiology accounts for a significant number of cases of pancreatitis, acute infection with Human Immunodeficiency Virus (HIV) was rarely reported as a possible etiology for acute pancreatitis in adults. Acute pancreatitis has never been reported as a presenting manifestation of acute HIV infection in children.
Case Report:
We describe a pediatric patient who presented with acute pancreatitis that revealed acute HIV infection.
Acute pancreatitis as a primary manifestation of HIV infection is very rare. It may represent an uncommon aspect of primary HIV infection. We suggest that acute HIV infection should be considered in the differential diagnosis of acute pancreatitis at all ages.
PMCID: PMC3616115  PMID: 23569476
acute pancreatitis; acute HIV infection; clinical manifestation; adolescent
7.  VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG 
BMC Physiology  2011;11:16.
This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity.
Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder.
The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density.
NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density.
For the first time, evidence is being presented supporting that chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon.
PMCID: PMC3226567  PMID: 22059553
8.  Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice  
The Journal of Clinical Investigation  2011;121(4):1657-1666.
Mucin-type O-linked oligosaccharides (O-glycans) are primary components of the intestinal mucins that form the mucus gel layer overlying the gut epithelium. Impaired expression of intestinal O-glycans has been observed in patients with ulcerative colitis (UC), but its role in the etiology of this disease is unknown. Here, we report that mice with intestinal epithelial cell–specific deficiency of core 1–derived O-glycans, the predominant form of O-glycans, developed spontaneous colitis that resembled human UC, including massive myeloid infiltrates and crypt abscesses. The colitis manifested in these mice was also characterized by TNF-producing myeloid infiltrates in colon mucosa in the absence of lymphocytes, supporting an essential role for myeloid cells in colitis initiation. Furthermore, induced deletion of intestinal core 1–derived O-glycans caused spontaneous colitis in adult mice. These data indicate a causal role for the loss of core 1–derived O-glycans in colitis. Finally, we detected a biosynthetic intermediate typically exposed in the absence of core 1 O-glycan, Tn antigen, in the colon epithelium of a subset of UC patients. Somatic mutations in the X-linked gene that encodes core 1 β1,3-galactosyltransferase–specific chaperone 1 (C1GALT1C1, also known as Cosmc), which is essential for core 1 O-glycosylation, were found in Tn-positive epithelia. These data suggest what we believe to be a new molecular mechanism for the pathogenesis of UC.
PMCID: PMC3069788  PMID: 21383503
9.  Molecular Characterization of Adeno-Associated Viruses Infecting Children 
Journal of Virology  2005;79(23):14781-14792.
Although adeno-associated virus (AAV) infection is common in humans, the biology of natural infection is poorly understood. Since it is likely that many primary AAV infections occur during childhood, we set out to characterize the frequency and complexity of circulating AAV isolates in fresh and archived frozen human pediatric tissues. Total cellular DNA was isolated from 175 tissue samples including freshly collected tonsils (n = 101) and archived frozen samples representing spleen (n = 21), lung (n = 16), muscle (n = 15), liver (n = 19), and heart (n = 3). Samples were screened for the presence of AAV and adenovirus sequences by PCR using degenerate primers. AAV DNA was detected in 7 of 101 (7%) tonsil samples and two of 74 other tissues (one spleen and one lung). Adenovirus sequences were identified in 19 of 101 tonsils (19%), but not in any other tissues. Complete capsid gene sequences were recovered from all nine AAV-positive tissues. Sequence analyses showed that eight of the capsid sequences were AAV2-like (∼98% amino acid identity), while the single spleen isolate was intermediate between serotypes 2 and 3. Comparison to the available AAV2 crystal structure revealed that the majority of the amino acid substitutions mapped to surface-exposed hypervariable domains. To further characterize the AAV capsid structure in these samples, we used a novel linear rolling-circle amplification method to amplify episomal AAV DNA and isolate infectious molecular clones from several human tissues. Serotype 2-like viruses were generated from these DNA clones and interestingly, failed to bind to a heparin sulfate column. Inspection of the capsid sequence from these two clones (and the other six AAV2-like isolates) revealed that they lacked arginine residues at positions 585 and 588 of the capsid protein, which are thought to be essential for interaction with the heparin sulfate proteoglycan coreceptor. These data provide a framework with which to explore wild-type AAV persistence in vivo and provide additional tools to further define the biodistribution and form of AAV in human tissues.
PMCID: PMC1287571  PMID: 16282478

Results 1-9 (9)