PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
1.  To go or not to go? 
Cell Cycle  2015;14(8):1136-1137.
doi:10.1080/15384101.2015.1018059
PMCID: PMC4614341  PMID: 25790080
2.  ZD7288, a blocker of the HCN channel family, increases doubling time of mouse embryonic stem cells and modulates differentiation outcomes in a context-dependent manner 
SpringerPlus  2016;5:41.
Pluripotent stem cells are the starting cell type of choice for the development of many cell-based regenerative therapies due to their rapid and unlimited proliferation and broad differentiation potential. The unique pluripotent cell cycle underlies both these properties. Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) family channels have previously been reported to modulate mouse embryonic stem cell (ESC) proliferation and here we characterize the effects of HCN inhibitor ZD7288 on ESC proliferation and stem cell identity. The doubling time of cells treated with the HCN blocker increased by ~30 % due to longer G1 and S phases, resulting in a nearly twofold reduction in ESC numbers after 4 day serum-free culture. Slower progression through S phase was not accompanied by H2AX phosphorylation or cell stalling at transition points, although EdU incorporation in treated cells was reduced. Despite the drastic cell cycle perturbations, the pluripotent status of the cells was not compromised by treatment. Cultures treated with the HCN blocker in maintenance conditions maintained pluripotency marker expression on both RNA and protein level, although we observed a reversible effect on morphology and colony formation frequency. Addition of ZD7288 in differentiating media improved FBS-driven differentiation, but not directed differentiation to neuroectoderm, further indicating that altered cell cycle structure does not necessarily compromise pluripotency and drive ESCs to differentiation. The categorically different outcomes of ZD7288 use during differentiation indicate that cell culture context can be determinative for effects of ion-modulatory molecules and underscores the need for exploring their action in serum-free conditions demanded by potential clinical use.
Electronic supplementary material
The online version of this article (doi:10.1186/s40064-016-1678-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s40064-016-1678-7
PMCID: PMC4715829  PMID: 26835223
Embryonic stem cells; Ion channel modulator; ZD7288; Differentiation; Proliferation; Pluripotency; Cell cycle; Serum
3.  Expression and Subcellular Distribution of GFP-Tagged Human Tetraspanin Proteins in Saccharomyces cerevisiae 
PLoS ONE  2015;10(7):e0134041.
Tetraspanins are integral membrane proteins that function as organizers of multimolecular complexes and modulate function of associated proteins. Mammalian genomes encode approximately 30 different members of this family and remotely related eukaryotic species also contain conserved tetraspanin homologs. Tetraspanins are involved in a number of fundamental processes such as regulation of cell migration, fusion, immunity and signaling. Moreover, they are implied in numerous pathological states including mental disorders, infectious diseases or cancer. Despite the great interest in tetraspanins, the structural and biochemical basis of their activity is still largely unknown. A major bottleneck lies in the difficulty of obtaining stable and homogeneous protein samples in large quantities. Here we report expression screening of 15 members of the human tetraspanin superfamily and successful protocols for the production in S. cerevisiae of a subset of tetraspanins involved in human cancer development. We have demonstrated the subcellular localization of overexpressed tetraspanin-green fluorescent protein fusion proteins in S. cerevisiae and found that despite being mislocalized, the fusion proteins are not degraded. The recombinantly produced tetraspanins are dispersed within the endoplasmic reticulum membranes or localized in granule-like structures in yeast cells. The recombinantly produced tetraspanins can be extracted from the membrane fraction and purified with detergents or the poly (styrene-co-maleic acid) polymer technique for use in further biochemical or biophysical studies.
doi:10.1371/journal.pone.0134041
PMCID: PMC4517926  PMID: 26218426
4.  Erg Channel Is Critical in Controlling Cell Volume during Cell Cycle in Embryonic Stem Cells 
PLoS ONE  2013;8(8):e72409.
Abstract
The cell cycle progression in mouse embryonic stem cells (mESCs) is controlled by ion fluxes that alter cell volume [1]. This suggests that ion fluxes might control dynamic changes in morphology over the cell cycle, such as rounding up of the cell at mitosis. However, specific channels regulating such dynamic changes and the possible interactions with actomyosin complex have not been clearly identified. Following RNAseq transcriptome analysis of cell cycle sorted mESCs, we found that expression of the K+ ion channel Erg1 peaked in G1 cell cycle phase, which was confirmed by immunostaining. Inhibition of Erg channel activity caused loss of G1 phase cells via non-apoptotic cell death. Cells first lost the ability of membrane blebbing, a typical feature of cultured embryonic stem cells. Continued Erg inhibition further increased cell volume and the cell eventually ruptured. In addition, atomic force measurements on live cells revealed a decreased cortical stiffness after treatment, suggesting alterations in actomyosin organization. When the intracellular osmotic pressure was experimentally decreased by hypertonic solution or block of K+ ion import via the Na, K-ATPase, cell viability was restored and cells acquired normal volume and blebbing activity. Our results suggest that Erg channels have a critical function in K+ ion homeostasis of mESCs over the cell cycle, and that cell death following Erg inhibition is a consequence of the inability to regulate cell volume.
doi:10.1371/journal.pone.0072409
PMCID: PMC3732234  PMID: 23936540
5.  Small molecule screening platform for assessment of cardiovascular toxicity on adult zebrafish heart 
BMC Physiology  2012;12:3.
Background
Cardiovascular toxicity is a major limiting factor in drug development and requires multiple cost-effective models to perform toxicological evaluation. Zebrafish is an excellent model for many developmental, toxicological and regenerative studies. Using approaches like morpholino knockdown and electrocardiogram, researchers have demonstrated physiological and functional similarities between zebrafish heart and human heart. The close resemblance of the genetic cascade governing heart development in zebrafish to that of humans has propelled the zebrafish system as a cost-effective model to conduct various genetic and pharmacological screens on developing embryos and larvae. The current report describes a methodology for rapid isolation of adult zebrafish heart, maintenance ex vivo, and a setup to perform quick small molecule throughput screening, including an in-house implemented analysis script.
Results
Adult zebrafish were anesthetized and after rapid decapitation the hearts were isolated. The short time required for isolation of hearts allows dissection of multiple fishes, thereby obtaining a large sample size. The simple protocol for ex vivo culture allowed maintaining the beating heart for several days. The in-house developed script and spectral analyses allowed the readouts to be presented either in time domain or in frequency domain. Taken together, the current report offers an efficient platform for performing cardiac drug testing and pharmacological screens.
Conclusion
The new methodology presents a fast, cost-effective, sensitive and reliable method for performing small molecule screening. The variety of readouts that can be obtained along with the in-house developed analyses script offers a powerful setup for performing cardiac toxicity evaluation by researchers from both academics and industry.
doi:10.1186/1472-6793-12-3
PMCID: PMC3334682  PMID: 22449203
Heart; Screening; Zebrafish; Small molecule; Ex vivo; Ca2+ signaling

Results 1-5 (5)