Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Investigation of gene Expression in C2C12 Myotubes Following simvastatin Application and Mechanical Strain 
The 3-hydroxy-3methylgutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) are the most effective prescribed drugs for lowering serum cholesterol; however, although statins are extremely safe medications and have brought significant benefits to patients with hypercholesterolemia, they have been shown to produce myalgia, cramps, exercise intolerance and fatigue. The aim of the study was to investigate the molecular mechanisms that may mediate statin myopathy.
We used DNA microarray analysis to examine the changes in gene expression profiles induced by 1 hour and 6 hours of statin treatment on differentiated C2C12 myotubes. Four genes were selected for analysis at the protein level using Western blot analysis on myotubes treated with statin with or without additional mechanical stretching.
Eighty-five genes exhibited more than a 2-fold up- or down-regulation in expression, of which 46 have known biological functions related primarily to transmembrane transport, signal transduction, cell growth/maintenance, protein metabolism, or apoptosis. At protein level, three of the four proteins were induced (Adrb1, Socs4 and Cflar) and one was repressed (Birc4). Changes in protein expression largely mirrored the changes in their corresponding transcripts, although the fold-change was less dramatic. The addition of imposed muscle fiber stretching did not exacerbate the expression of these genes at the protein level with the exception of Cflar, a pro-apoptotic protein.
These data suggested that alterations in the expressions of some statin-regulated genes could be causative factors for statin toxicity in muscle. Repression of the anti-apoptosis gene (Birc4) and activation of the pro-apoptosis gene (Cflar) indicated that cell death may play an important role in statin-induced myopathy.
PMCID: PMC4079460  PMID: 19262002
Statin; C2C12 cells; Microarray analysis; Mechanical strain; Myopathy
Acheron (Achn) is a new member of the Lupus Antigen family of RNA binding proteins. Previous studies have shown that Achn controls developmental decisions in neurons and muscle. In the human mammary gland, Achn expression is restricted to ductal myoepithelial cells. Microarray analysis and immunohistochemistry have shown that Achn expression is elevated in some basal-like ductal carcinomas. To study the possible role of Achn in breast cancer, we engineered human MDA-MB-231 cells to stably express enhanced green fluorescent protein-tagged wild-type Achn (AchnWT), as well as Achn lacking either its nuclear localization signal (AchnNLS) or its nuclear export signal (AchnNES). In in vitro assays, AchnWT and AchnNES, but not AchnNLS, enhanced cell proliferation, lamellipodia formation, and invasive activity and drove expression of the elevated expression of the metastasis-associated proteins MMP-9 and VEGF. To determine if Achn could alter the behavior of human breast cancer cells in vivo, Achn-engineered MDA-MB-231 cells were injected into athymic SCID/Beige mice. AchnWT and AchnNES-expressing tumors displayed enhanced angiogenesis and an approximately five-fold increase in tumor size relative to either control cells or those expressing AchnNLS. These data suggest that Achn enhances human breast tumor growth and vascularization, and that this activity is dependent on nuclear localization.
PMCID: PMC3388741  PMID: 21387291
invasion; metastasis; VEGF; MDA-MB-231 cells; xenograft; MMP9
3.  Expression of human amyloid precursor protein in the skeletal muscles of Drosophila results in age- and activity-dependent muscle weakness 
BMC Physiology  2011;11:7.
One of the hallmarks of Alzheimer's disease, and several other degenerative disorders such as Inclusion Body Myositis, is the abnormal accumulation of amyloid precursor protein (APP) and its proteolytic amyloid peptides. To better understand the pathological consequences of inappropriate APP expression on developing tissues, we generated transgenic flies that express wild-type human APP in the skeletal muscles, and then performed anatomical, electrophysiological, and behavioral analysis of the adults.
We observed that neither muscle development nor animal longevity was compromised in these transgenic animals. However, human APP expressing adults developed age-dependent defects in both climbing and flying. We could advance or retard the onset of symptoms by rearing animals in vials with different surface properties, suggesting that human APP expression-mediated behavioral defects are influenced by muscle activity. Muscles from transgenic animals did not display protein aggregates or structural abnormalities at the light or transmission electron microscopic levels. In agreement with genetic studies performed with developing mammalian myoblasts, we observed that co-expression of the ubiquitin E3 ligase Parkin could ameliorate human APP-induced defects.
These data suggest that: 1) ectopic expression of human APP in fruit flies leads to age- and activity-dependent behavioral defects without overt changes to muscle development or structure; 2) environmental influences can greatly alter the phenotypic consequences of human APP toxicity; and 3) genetic modifiers of APP-induced pathology can be identified and analyzed in this model.
PMCID: PMC3112101  PMID: 21518451
amyloid precursor protein (APP); Drosophila; muscle; mitochondria; electron microscopy; apoptosis; Parkin
4.  Acheron, a novel member of the Lupus Antigen family, is induced during the programmed cell death of skeletal muscles in the moth Manduca sexta 
Gene  2007;393(1-2):101-109.
In order to identify novel genes associated with the initiation of programmed cell death during development, we employed a differential screening protocol to isolate cDNAs that were induced when the intersegmental muscles (ISM) of the moth Manduca sexta become committed to die at the end of metamorphosis. In this report we provide the first description of Acheron (Achn), a novel protein that was isolated in this screen. Acheron contains three Lupus antigen (La) repeats, nuclear localization and export (NLS and NES) signals, and an RNA recognition motif. Achn defines a new subfamily of La proteins that appears to have branched from authentic La protein relatively late in metazoan evolution. Achn is widely expressed in various insect, mouse and human tissues. Consistent with its expression during ISM death, Achn has been shown in separate studies to control muscle differentiation and apoptosis in both mice and zebrafish. These data define Achn as a newly discovered regulatory molecule that presumably mediates a variety of developmental and homeostatic processes in animals.
PMCID: PMC2739619  PMID: 17383118
apoptosis; 20-hydroxyecdysone; development; metamorphosis; gene expression

Results 1-4 (4)