Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  MicroRNA Profiling in Mucosal Biopsies of Eosinophilic Esophagitis Patients Pre and Post Treatment with Steroids and Relationship with mRNA Targets 
PLoS ONE  2012;7(7):e40676.
The characterization of miRNAs and their target mRNAs involved in regulation of the immune process is an area of intense research and relatively little is known governing these processes in allergic inflammation. Here we present novel findings defining the miRNA and mRNA transcriptome in eosinophilic esophagitis (EoE), an increasing recognized allergic disorder.
Esophageal epithelial miRNA and mRNA from five paired biopsies pre- and post-treatment with glucocorticosteroids were profiled using Taqman and Affymetrix arrays. Validation was performed on additional paired biopsies, untreated EoE specimens and normal controls. Differentially regulated miRNAs and mRNAs were generated, within which miRNA-mRNA target pairs with high predicted confidence were identified.
Compared to the post-glucocorticoid treated esophageal mucosa, of all the 377 miRNA sequences examined, 32 miRNAs were significantly upregulated and four downregulated in the pre-treated biopsies. MiR-214 was the most upregulated (150 fold) and miR-146b-5b, 146a, 145, 142-3p and 21 were upregulated by at least 10 fold. Out of 12 miRNAs chosen for validation by qRT-PCR, five (miR-214, 146b-5p, 146a, 142-3p and 21) were confirmed and 11 shared the same trend. When the expression of the 12 miRNAs in the EoE mucosa was compared to unrelated normal mucosa, six (miR-214, 146b-5p, 146a, 21, 203, and 489) showed similar significant changes as in the paired samples and 10 of them shared the same trend. In the same five pairs of samples used to profile miRNA, 311 mRNAs were down-regulated and 35 were up-regulated in pre-treated EoE mucosa. Among them, 164 mRNAs were identified as potential targets of differentially regulated miRNAs. Further analysis revealed that immune-related genes, targeted and non-targeted by miRNAs, were among the most important genes involved in the pathogenesis of EoE.
Our findings add to the accumulating body of data defining a regulatory role for miRNA in immune and allergic processes.
PMCID: PMC3398046  PMID: 22815788
2.  Postnatal liver growth and regeneration are independent of c-myc in a mouse model of conditional hepatic c-myc deletion 
BMC Physiology  2012;12:1.
The transcription factor c-myc regulates genes involved in hepatocyte growth, proliferation, metabolism, and differentiation. It has also been assigned roles in liver development and regeneration. In previous studies, we made the unexpected observation that c-Myc protein levels were similar in proliferating fetal liver and quiescent adult liver with c-Myc displaying nucleolar localization in the latter. In order to investigate the functional role of c-Myc in adult liver, we have developed a hepatocyte-specific c-myc knockout mouse, c-mycfl/fl;Alb-Cre.
Liver weight to body weight ratios were similar in control and c-myc deficient mice. Liver architecture was unaffected. Conditional c-myc deletion did not result in compensatory induction of other myc family members or in c-Myc's binding partner Max. Floxed c-myc did have a negative effect on Alb-Cre expression at 4 weeks of age. To explore this relationship further, we used the Rosa26 reporter line to assay Cre activity in the c-myc floxed mice. No significant difference in Alb-Cre activity was found between control and c-mycfl/fl mice. c-myc deficient mice were studied in a nonproliferative model of liver growth, fasting for 48 hr followed by a 24 hr refeeding period. Fasting resulted in a decrease in liver mass and liver protein, both of which recovered upon 24 h of refeeding in the c-mycfl/fl;Alb-Cre animals. There was also no effect of reducing c-myc on recovery of liver mass following 2/3 partial hepatectomy.
c-Myc appears to be dispensable for normal liver growth during the postnatal period, restoration of liver mass following partial hepatectomy and recovery from fasting.
PMCID: PMC3353165  PMID: 22397685
3.  Chromatin remodeling in the aging genome of Drosophila 
Aging cell  2010;9(6):971-978.
Chromatin structure affects the accessibility of DNA to transcription, repair and replication. Changes in chromatin structure occur during development, but less is known about changes during aging. We examined the state of chromatin structure and its effect on gene expression during aging in Drosophila at the whole genome and cellular level using whole genome tiling microarrays of activation and repressive chromatin marks, whole genome transcriptional microarrays and single cell immunohistochemistry. We found dramatic reorganization of chromosomal regions with age. Mapping of H3K9me3 and HP1 signals to fly chromosomes reveals in young flies the expected high enrichment in the pericentric regions, the 4th chromosome and islands of facultative heterochromatin dispersed throughout the genome. With age there is a striking reduction in this enrichment resulting in a nearly equivalent level of H3K9me3 and HP1 in the pericentric regions, the 4th chromosome, facultative heterochromatin and euchromatin. These extensive changes in repressive chromatin marks are associated with alterations in age-related gene expression. Large-scale changes in repressive marks with age are further substantiated by single cell immunohistochemistry that show changes in nuclear distribution of H3K9me3 and HP1 marks with age. Such epigenetic changes are expected to directly or indirectly impinge upon important cellular functions such as gene expression, DNA repair and DNA replication. The combination of genome-wide approaches such as whole genome chromatin immunoprecipitation and transcriptional studies in conjunction with single cell immunohistochemistry as shown here provide a first step toward defining how changes in chromatin may contribute to the process of aging in metazoans.
PMCID: PMC2980570  PMID: 20961390
epigenetics; heterochromatin
4.  Accelerated Ovarian Aging in the Absence of the Transcription Regulator TAF4B in Mice1 
Biology of Reproduction  2009;82(1):23-34.
The mammalian ovary is unique in that its reproductive life span is limited by oocyte quantity and quality. Oocytes are recruited from a finite pool of primordial follicles that are usually exhausted from the ovary during midadult life. If regulation of this pool is perturbed, the reproductive capacity of the ovary is compromised. TAF4B is a gonad-enriched subunit of the TFIID complex required for female fertility in mice. Previous characterization of TAF4B-deficient ovaries revealed several reproductive deficits that collectively result in infertility. However, the etiology of such fertility defects remains unknown. By assaying estrous cycle, ovarian pathology, and gene expression changes in young Taf4b-null female mice, we show that TAF4B-deficient female mice exhibit premature reproductive senescence. The rapid decline of ovarian function in Taf4b-null mice begins in early postnatal life, and follicle depletion is completed by 16 wk of age. To uncover differences in gene expression that may underlie accelerated ovarian aging, we compared genome-wide expression profiles of 3-wk-old, prepubescent Taf4b-null and wild-type ovaries. At 3 wk of age, decreased gene expression in Taf4b-null ovaries is similar to that seen in aged ovaries, revealing several molecular signatures of premature reproductive senescence, including reduced Smc1b. One significantly reduced transcript in the young TAF4B-null ovary codes for MOV10L1, a putative germline-specific RNA helicase that is related to the Drosophila RNA interference protein, armitage. We show here that Mov10l1 is expressed in mouse oocytes and that its expression is sensitive to TAF4B level, linking TAF4B to the posttranscriptional control of ovarian gene expression.
TAF4B promotes oocyte transcription required for ovarian life span regulation.
PMCID: PMC2802112  PMID: 19684329
aging; gene regulation; oocyte development; oogenesis; ovary; ovulatory cycle; TFIID; transcription
5.  Comparative transcriptional profiling identifies takeout as a gene that regulates life span 
Aging (Albany NY)  2010;2(5):298-310.
A major challenge in translating the positive effects of dietary restriction (DR) for the improvement of human health is the development of therapeutic mimics. One approach to finding DR mimics is based upon identification of the proximal effectors of DR life span extension. Whole genome profiling of DR in Drosophila shows a large number of changes in gene expression, making it difficult to establish which changes are involved in life span determination as opposed to other unrelated physiological changes. We used comparative whole genome expression profiling to discover genes whose change in expression is shared between DR and two molecular genetic life span extending interventions related to DR, increased dSir2 and decreased Dmp53 activity. We find twenty-one genes shared among the three related life span extending interventions. One of these genes, takeout, thought to be involved in circadian rhythms, feeding behavior and juvenile hormone binding is also increased in four other life span extending conditions: Rpd3, Indy, chico and methuselah. We demonstrate takeout is involved in longevity determination by specifically increasing adult takeout expression and extending life span. These studies demonstrate the power of comparative whole genome transcriptional profiling for identifying specific downstream elements of the DR life span extending pathway.
PMCID: PMC2898020  PMID: 20519778
Dietary restriction; Calorie restriction; microarrays; Drosophila melanogaster; Sir2; p53; Rpd3; Indy; methuselah (mth); chico; life span extension; and takeout
6.  Analysis of Cell Cycle Phases and Progression in Cultured Mammalian Cells 
Methods (San Diego, Calif.)  2007;41(2):143-150.
Fluorescence Activated Cell Sorting (FACS) analysis has become a standard tool to analyze cell cycle distributions in populations of cells. These methods require relatively large numbers of cells, and do not provide optimal resolution of the transitions between cell cycle phases. In this report we describe in detail complementary methods that utilize the incorporation of nucleotide analogs combined with microscopic examination. While often more time consuming, these protocols typically require far fewer cells, and allow accurate kinetic assessment of cell cycle progression. We also describe the use of a technique for the synchronization of adherent cells in mitosis by simple mechanical agitation (mitotic shake-off) that eliminates physiological perturbation associated with drug treatments.
PMCID: PMC1828876  PMID: 17189856
7.  Loss of Protooncogene c-Myc Function Impedes G1 Phase Progression Both before and after the Restriction Point 
Molecular Biology of the Cell  2003;14(3):823-835.
c-myc is an important protooncogene whose misregulation is believed to causally affect the development of numerous human cancers. c-myc null rat fibroblasts are viable but display a severe (two- to threefold) retardation of proliferation. The rates of RNA and protein synthesis are reduced by approximately the same factor, whereas cell size remains unaffected. We have performed a detailed kinetic cell cycle analysis of c-myc−/− cells by using several labeling and synchronization methods. The majority of cells (>90%) in asynchronous, exponential phase c-myc−/− cultures cycle continuously with uniformly elongated cell cycles. Cell cycle elongation is due to a major lengthening of G1 phase (four- to fivefold) and a more limited lengthening of G2 phase (twofold), whereas S phase duration is largely unaffected. Progression from mitosis to the G1 restriction point and the subsequent progression from the restriction point into S phase are both drastically delayed. These results are best explained by a model in which c-Myc directly affects cell growth (accumulation of mass) and cell proliferation (the cell cycle machinery) by independent pathways.
PMCID: PMC151562  PMID: 12631706

Results 1-7 (7)