Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  TNFα enhances microvascular tone and reduces blood flow in the cochlea via enhanced S1P signaling 
To demonstrate that TNFα, via sphingosine-1-phosphate (S1P) signaling, has the potential to alter cochlear blood flow and thus, cause ischemic hearing loss.
Methods and Results
TNFα induced a pro-constrictive state throughout the cochlear microvasculature, which reduced capillary diameter and cochlear blood flow in vivo. In vitro isolated preparations of the spiral modiolar artery and spiral ligament capillaries confirmed these observations. Antagonizing S1P receptor 2 subtype signaling (1µmol/L JTE013) attenuated the effects of TNFα in all models. TNFα activated Sk1 and induced its translocation to the smooth muscle cell membrane. Expression of a dominant-negative Sk1 mutant (Sk1G82D) eliminated both baseline spiral modiolar artery calcium sensitivity and TNFα effects, while a non-phosphorylatable Sk1 mutant (Sk1S225A) only blocked the effects of TNFα. A small group of etanercept-treated hearing loss patients recovered with a one-phase exponential decay (t½=1.56±0.20 weeks), which matched a kinetic predicted for a vascular origin.
TNFα indeed reduces cochlear blood flow via the activation of vascular S1P signaling. This integrates hearing loss into the family of ischemic microvascular pathologies, with implications for risk stratification, diagnosis and treatment.
PMCID: PMC3404620  PMID: 20930159
Signal transduction; transfection; etanercept; sphingosine kinase 1; cochlear microcirculation
2.  Inhibition of radiation induced migration of human head and neck squamous cell carcinoma cells by blocking of EGF receptor pathways 
BMC Cancer  2011;11:388.
Recently it has been shown that radiation induces migration of glioma cells and facilitates a further spread of tumor cells locally and systemically. The aim of this study was to evaluate whether radiotherapy induces migration in head and neck squamous cell carcinoma (HNSCC). A further aim was to investigate the effects of blocking the epidermal growth factor receptor (EGFR) and its downstream pathways (Raf/MEK/ERK, PI3K/Akt) on tumor cell migration in vitro.
Migration of tumor cells was assessed via a wound healing assay and proliferation by a MTT colorimeritric assay using 3 HNSCC cell lines (BHY, CAL-27, HN). The cells were treated with increasing doses of irradiation (2 Gy, 5 Gy, 8 Gy) in the presence or absence of EGF, EGFR-antagonist (AG1478) or inhibitors of the downstream pathways PI3K (LY294002), mTOR (rapamycin) and MEK1 (PD98059). Biochemical activation of EGFR and the downstream markers Akt and ERK were examined by Western blot analysis.
In absence of stimulation or inhibition, increasing doses of irradiation induced a dose-dependent enhancement of migrating cells (p < 0.05 for the 3 HNSCC cell lines) and a decrease of cell proliferation (p < 0.05 for the 3 HNSCC cell lines). The inhibition of EGFR or the downstream pathways reduced cell migration significantly (almost all p < 0.05 for the 3 HNSCC cell lines). Stimulation of HNSCC cells with EGF caused a significant increase in migration (p < 0.05 for the 3 HNSCC cell lines). After irradiation alone a pronounced activation of EGFR was observed by Western blot analysis.
Our results demonstrate that the EGFR is involved in radiation induced migration of HNSCC cells. Therefore EGFR or the downstream pathways might be a target for the treatment of HNSCC to improve the efficacy of radiotherapy.
PMCID: PMC3224383  PMID: 21896192
3.  Calcium sparks in the intact gerbil spiral modiolar artery 
BMC Physiology  2011;11:15.
Calcium sparks are ryanodine receptor mediated transient calcium signals that have been shown to hyperpolarize the membrane potential by activating large conductance calcium activated potassium (BK) channels in vascular smooth muscle cells. Along with voltage-dependent calcium channels, they form a signaling unit that has a vasodilatory influence on vascular diameter and regulation of myogenic tone. The existence and role of calcium sparks has hitherto been unexplored in the spiral modiolar artery, the end artery that controls blood flow to the cochlea. The goal of the present study was to determine the presence and properties of calcium sparks in the intact gerbil spiral modiolar artery.
Calcium sparks were recorded from smooth muscle cells of intact arteries loaded with fluo-4 AM. Calcium sparks occurred with a frequency of 2.6 Hz, a rise time of 17 ms and a time to half-decay of 20 ms. Ryanodine reduced spark frequency within 3 min from 2.6 to 0.6 Hz. Caffeine (1 mM) increased spark frequency from 2.3 to 3.3 Hz and prolonged rise and half-decay times from 17 to 19 ms and from 20 to 23 ms, respectively. Elevation of potassium (3.6 to 37.5 mM), presumably via depolarization, increased spark frequency from 2.4 to 3.2 Hz. Neither ryanodine nor depolarization changed rise or decay times.
This is the first characterization of calcium sparks in smooth muscle cells of the spiral modiolar artery. The results suggest that calcium sparks may regulate the diameter of the spiral modiolar artery and cochlear blood flow.
PMCID: PMC3170618  PMID: 21871098
4.  Pharmacological reversal of endothelin-1 mediated constriction of the spiral modiolar artery: a potential new treatment for sudden sensorineural hearing loss 
Vasospasm of the spiral modiolar artery (SMA) may cause ischemic stroke of the inner ear. Endothelin-1 (ET-1) induces a strong, long-lasting constriction of the SMA by increasing contractile apparatus Ca2+ sensitivity via Rho-kinase. We therefore tested several Rho-kinase inhibitors and a cell-permeable analogue of cAMP (dbcAMP) for their ability to reverse ET-1-induced constriction and Ca2+-sensitization.
The present study employed SMA isolated from gerbil temporal bones. Ca2+sensitivity was evaluated by correlating vascular diameter and smooth muscle cell [Ca2+]i, measured by fluo-4-microfluorometry and videomicroscopy.
The Rho-kinase inhibitors Y-27632, fasudil, and hydroxy-fasudil reversed ET-1-induced vasoconstriction with an IC50 of 3, 15, and 111 μmol/L, respectively. DbcAMP stimulated a dose-dependent vasodilation (Ec50 = 1 mmol/L) and a reduction of [Ca2+]i (EC50 = 0.3 μmol/L) of ET-1-preconstricted vessels (1 nmol/L). Fasudil and dbcAMP both reversed the ET-1-induced increase in Ca2+ sensitivity.
Rho-kinase inhibition and dbcAMP reversed ET-1-induced vasoconstriction and Ca2+-sensitization. Therefore, Rho-kinase inhibitors or cAMP modulators could possess promise as pharmacological tools for the treatment of ET-1-induced constriction, ischemic stroke and sudden hearing loss.
PMCID: PMC1315339  PMID: 16316469
5.  Apical membrane P2Y4 purinergic receptor controls K+ secretion by strial marginal cell epithelium 
It was previously shown that K+ secretion by strial marginal cell epithelium is under the control of G-protein coupled receptors of the P2Y family in the apical membrane. Receptor activation by uracil nucleotides (P2Y2, P2Y4 or P2Y6) leads to a decrease in the electrogenic K+ secretion. The present study was conducted to determine the subtype of the functional purinergic receptor in gerbil stria vascularis, to test if receptor activation leads to elevation of intracellular [Ca2+] and to test if the response to these receptors undergoes desensitization.
The transepithelial short circuit current (Isc) represents electrogenic K+ secretion and was found to be decreased by uridine 5'-triphosphate (UTP), adenosine 5'-triphosphate (ATP) and diadenosine tetraphosphate (Ap4A) but not uridine 5'-diphosphate (UDP) at the apical membrane of marginal cells of the gerbil stria vascularis. The potencies of these agonists were consistent with rodent P2Y4 and P2Y2 but not P2Y6 receptors. Activation caused a biphasic increase in intracellular [Ca2+] that could be partially blocked by 2-aminoethoxy-diphenyl borate (2-APB), an inhibitor of the IP3 receptor and store-operated channels. Suramin (100 μM) did not inhibit the effect of UTP (1 μM). The ineffectiveness of suramin at the concentration used was consistent with P2Y4 but not P2Y2. Transcripts for both P2Y2 and P2Y4 were found in the stria vascularis. Sustained exposure to ATP or UTP for 15 min caused a depression of Isc that appeared to have two components but with apparently no chronic desensitization.
The results support the conclusion that regulation of K+ secretion across strial marginal cell epithelium occurs by P2Y4 receptors at the apical membrane. The apparent lack of desensitization of the response is consistent with two processes: a rapid-onset phosphorylation of KCNE1 channel subunit and a slower-onset of regulation by depletion of plasma membrane PIP2.
PMCID: PMC1298316  PMID: 16266433

Results 1-5 (5)