PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Intracardiac Origin of Heart Rate Variability, Pacemaker Funny Current and their Possible Association with Critical Illness 
Current Cardiology Reviews  2013;9(1):82-96.
Heart rate variability (HRV) is an indirect estimator of autonomic modulation of heart rate and is considered a risk marker in critical illness, particularly in heart failure and severe sepsis. A reduced HRV has been found in critically ill patients and has been associated with neuro-autonomic uncoupling or decreased baroreflex sensitivity. However, results from human and animal experimental studies indicate that intracardiac mechanisms might also be responsible for interbeat fluctuations. These studies have demonstrated that different membrane channel proteins and especially the so-called ‘funny’ current (If), an hyperpolarization-activated, inward current that drives diastolic depolarization resulting in spontaneous activity in cardiac pacemaker cells, are altered during critical illness. Furthermore, membrane channels kinetics seem to have significant impact upon HRV, whose early decrease might reflect a cellular metabolic stress. In this review article we present research findings regarding intracardiac origin of HRV, at the cellular level and in both isolated sinoatrial node and whole ex vivo heart preparations. In addition, we will review results from various experimental studies that support the interrelation between If and HRV during endotoxemia. We suggest that reduced HRV during sepsis could also be associated with altered pacemaker cell membrane properties, due to ionic current remodeling.
doi:10.2174/157340313805076359
PMCID: PMC3584310  PMID: 22920474
Endotoxin; funny current; heart rate; heart rate variability; ivabradine; sepsis; sinoatrial node.
2.  Procalcitonin and procalcitonin kinetics for diagnosis and prognosis of intravascular catheter-related bloodstream infections in selected critically ill patients: a prospective observational study 
BMC Infectious Diseases  2012;12:247.
Background
Procalcitonin (PCT) has emerged as a valuable marker of sepsis. The potential role of PCT in diagnosis and therapy monitoring of intravascular catheter-related bloodstream infections (CRBSI) in intensive care unit (ICU) is still unclear and was evaluated.
Methods
Forty-six patients were included in the study, provided they were free of infection upon admission and presented the first episode of suspected CRBSI during their ICU stay. Patients who had developed any other infection were excluded. PCT was measured daily during the ICU hospitalization. Primary endpoint was proven CRBSI. Therapy monitoring as according to infection control was also evaluated.
Results
Among the 46 patients, 26 were diagnosed with CRBSI. Median PCT on the day of infection suspicion (D0) was 7.70 and 0.10 ng/ml for patients with and without proven CRBSI, respectively (p < 0.001). The area under the curve (AUC) for PCT was 0.990 (95% CI; 0.972 – 1.000), whereas a cut-off value of 0.70 ng/ml provided sensitivity and specificity of 92.3 and 100% respectively. In contrast, the AUC for white blood cells (WBC) was 0.539 (95% CI; 0.369 – 0.709), and for C-reactive protein (CRP), 0.603 (95% CI; 0.438 – 0.768). PCT was the best predictor of proven infection. Moreover, an increase >0.20 ng/ml of PCT between the D0 and any of the 4 preceding days was associated with a positive predictive value exceeding 96%. PCT concentrations from the D2 to D6 after suspected infection tended to decrease in controlled patients, whereas remained stable in non-controlled subjects. A PCT concentration exceeding 1.5 ng/ml during D3 was associated with lack of responsiveness to therapy (p = 0.028).
Conclusions
We suggest that PCT could be a helpful diagnostic and prognostic marker of CRBSI in critically ill patients. Both absolute values and variations should be considered.
doi:10.1186/1471-2334-12-247
PMCID: PMC3502591  PMID: 23043618
3.  Temperature variability analysis using wavelets and multiscale entropy in patients with systemic inflammatory response syndrome, sepsis, and septic shock 
Critical Care  2012;16(2):R51.
Background
Even though temperature is a continuous quantitative variable, its measurement has been considered a snapshot of a process, indicating whether a patient is febrile or afebrile. Recently, other diagnostic techniques have been proposed for the association between different properties of the temperature curve with severity of illness in the Intensive Care Unit (ICU), based on complexity analysis of continuously monitored body temperature. In this study, we tried to assess temperature complexity in patients with systemic inflammation during a suspected ICU-acquired infection, by using wavelets transformation and multiscale entropy of temperature signals, in a cohort of mixed critically ill patients.
Methods
Twenty-two patients were enrolled in the study. In five, systemic inflammatory response syndrome (SIRS, group 1) developed, 10 had sepsis (group 2), and seven had septic shock (group 3). All temperature curves were studied during the first 24 hours of an inflammatory state. A wavelet transformation was applied, decomposing the signal in different frequency components (scales) that have been found to reflect neurogenic and metabolic inputs on temperature oscillations. Wavelet energy and entropy per different scales associated with complexity in specific frequency bands and multiscale entropy of the whole signal were calculated. Moreover, a clustering technique and a linear discriminant analysis (LDA) were applied for permitting pattern recognition in data sets and assessing diagnostic accuracy of different wavelet features among the three classes of patients.
Results
Statistically significant differences were found in wavelet entropy between patients with SIRS and groups 2 and 3, and in specific ultradian bands between SIRS and group 3, with decreased entropy in sepsis. Cluster analysis using wavelet features in specific bands revealed concrete clusters closely related with the groups in focus. LDA after wrapper-based feature selection was able to classify with an accuracy of more than 80% SIRS from the two sepsis groups, based on multiparametric patterns of entropy values in the very low frequencies and indicating reduced metabolic inputs on local thermoregulation, probably associated with extensive vasodilatation.
Conclusions
We suggest that complexity analysis of temperature signals can assess inherent thermoregulatory dynamics during systemic inflammation and has increased discriminating value in patients with infectious versus noninfectious conditions, probably associated with severity of illness.
doi:10.1186/cc11255
PMCID: PMC3681376  PMID: 22424316
4.  Study of multiparameter respiratory pattern complexity in surgical critically ill patients during weaning trials 
BMC Physiology  2011;11:2.
Background
Separation from mechanical ventilation is a difficult task, whereas conventional predictive indices have not been proven accurate enough, so far. A few studies have explored changes of breathing pattern variability for weaning outcome prediction, with conflicting results. In this study, we tried to assess respiratory complexity during weaning trials, using different non-linear methods derived from theory of complex systems, in a cohort of surgical critically ill patients.
Results
Thirty two patients were enrolled in the study. There were 22 who passed and 10 who failed a weaning trial. Tidal volume and mean inspiratory flow were analyzed for 10 minutes during two phases: 1. pressure support (PS) ventilation (15-20 cm H2O) and 2. weaning trials with PS: 5 cm H2O. Sample entropy (SampEn), detrended fluctuation analysis (DFA) exponent, fractal dimension (FD) and largest lyapunov exponents (LLE) of the two respiratory parameters were computed in all patients and during the two phases of PS. Weaning failure patients exhibited significantly decreased respiratory pattern complexity, reflected in reduced sample entropy and lyapunov exponents and increased DFA exponents of respiratory flow time series, compared to weaning success subjects (p < 0.001). In addition, their changes were opposite between the two phases of the weaning trials. A new model including rapid shallow breathing index (RSBI), its product with airway occlusion pressure at 0.1 sec (P0.1), SampEn and LLE predicted better weaning outcome compared with RSBI, P0.1 and RSBI* P0.1 (conventional model, R2 = 0.874 vs 0.643, p < 0.001). Areas under the curve were 0.916 vs 0.831, respectively (p < 0.05).
Conclusions
We suggest that complexity analysis of respiratory signals can assess inherent breathing pattern dynamics and has increased prognostic impact upon weaning outcome in surgical patients.
doi:10.1186/1472-6793-11-2
PMCID: PMC3031268  PMID: 21255420
5.  Relation of tricuspid annular displacement and tissue Doppler imaging velocities with duration of weaning in mechanically ventilated patients with acute pulmonary edema 
Background
Liberation from the ventilator is a difficult task, whereas early echocardiographic indices of weaning readiness are still lacking. The aim of this study was to test whether tricuspid annular plane systolic excursion (TAPSE) and right ventricular (RV) systolic (Sm) and diastolic (Em & Am) tissue Doppler imaging (TDI) velocities are related with duration of weaning in mechanically ventilated patients with acute respiratory failure due to acute pulmonary edema (APE).
Methods
Detailed quantification of left and right ventricular systolic and diastolic function was performed at admission to the Intensive Care Unit by Doppler echocardiography, in a cohort of 32 mechanically ventilated patients with APE. TAPSE and RV TDI velocities were compared between patients with and without prolonged weaning (≥ or < 7 days from the first weaning trial respectively), whereas their association with duration of ventilation and left ventricular (LV) echo-derived indices was tested with multivariate linear and logistic regression analysis.
Results
Patients with prolonged weaning (n = 12) had decreased TAPSE (14.59 ± 1.56 vs 19.13 ± 2.59 mm), Sm (8.68 ± 0.94 vs 11.62 ± 1.77 cm/sec) and Em/Am ratio (0.98 ± 0.80 vs 2.62 ± 0.67, p <0.001 for all comparisons) and increased Ε/e' (11.31 ± 1.02 vs 8.98 ± 1.70, p <0.001) compared with subjects without prolonged weaning (n = 20). Logistic regression analysis revealed that TAPSE (R2 = 0.53, beta slope = 0.76, p < 0.001), Sm (R2 = 0.52, beta = 0.75, p < 0.001) and Em/Am (R2 = 0.57, beta = 0.32, p < 0.001) can predict length of weaning ≥ 7 days. The above measures were also proven to correlate significantly with Ε/e' (r = -0.83 for TAPSE, r = -0.87 for Sm and r = -0.79 for Em/Am, p < 0.001 for all comparisons).
Conclusions
We suggest that in mechanically ventilated patients with APE, low TAPSE and RV TDI velocities upon admission are associated with delayed liberation from mechanical ventilation, probably due to more severe LV heart failure.
doi:10.1186/1471-2261-10-20
PMCID: PMC2880285  PMID: 20478065
6.  A step-by-step diagnosis of exclusion in a twin pregnancy with acute respiratory failure due to non-fatal amniotic fluid embolism: a case report 
Introduction
Respiratory failure may develop during the later stages of pregnancy and is usually associated with tocolysis or other co-existing conditions such as pneumonia, sepsis, pre-eclampsia or amniotic fluid embolism syndrome.
Case presentation
We present the case of a 34-year-old healthy woman with a twin pregnancy at 31 weeks and 6 days who experienced acute respiratory failure, a few hours after administration of tocolysis (ritodrine), due to preterm premature rupture of the membranes. Her chest discomfort was significantly ameliorated after the ritodrine infusion was stopped and a Cesarean section was performed 48 hours later under spinal anesthesia; however, 2 hours after surgery she developed severe hypoxemia, hypotension, fever and mild coagulopathy. The patient was intubated and transferred to the intensive care unit where she made a quick and uneventful recovery within 3 days. As there was no evidence for drug- or infection-related thromboembolic or myocardial causes of respiratory failure, we conclude that our patient experienced a rare type of non-fatal amniotic fluid embolism.
Conclusion
In spite of the lack of solid scientific support for our diagnosis, we conclude that our patient suffered an uncommon type of amniotic fluid embolism syndrome and we believe that this report highlights the need for extreme vigilance and a high index of suspicion for such a diagnosis in any pregnant individual.
doi:10.1186/1752-1947-2-177
PMCID: PMC2415356  PMID: 18505548

Results 1-6 (6)