Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Athletic humans and horses: Comparative analysis of interleukin-6 (IL-6) and IL-6 receptor (IL-6R) expression in peripheral blood mononuclear cells in trained and untrained subjects at rest 
BMC Physiology  2011;11:3.
Horses and humans share a natural proclivity for athletic performance. In this respect, horses can be considered a reference species in studies designed to optimize physical training and disease prevention. In both species, interleukin-6 (IL-6) plays a major role in regulating the inflammatory process induced during exercise as part of an integrated metabolic regulatory network. The aim of this study was to compare IL-6 and IL-6 receptor (IL-6R) mRNA expression in peripheral blood mononuclear cells (PBMCs) in trained and untrained humans and horses.
Nine highly trained male swimmers (training volume: 21.6 ± 1.7 h/wk in 10-12 sessions) were compared with two age-matched control groups represented by eight lightly trained runners (training volume: 6.4 ± 2.6 h/wk in 3-5 sessions) and nine untrained subjects. In addition, eight trained horses (training volume: 8.0 ± 2.1 h/wk in 3-4 sessions) were compared with eight age-matched sedentary mares. In humans, IL-6 mRNA levels in PBMCs determined by quantitative reverse transcription-polymerase chain reaction were significantly higher in highly trained subjects, whereas IL-6R expression did not differ among groups. In horses, transcripts of both IL-6 and IL-6R were significantly up-regulated in the trained group.
Up-regulation of IL-6R expression in PBMCs in horses could reflect a mechanism that maintains an adequate anti-inflammatory environment at rest through ubiquitous production of anti-inflammatory cytokines throughout the body. These findings suggest that the system that controls the inflammatory response in horses is better adapted to respond to exercise than that in humans.
PMCID: PMC3036646  PMID: 21255427
2.  Differential expression of follistatin and FLRG in human breast proliferative disorders 
BMC Cancer  2009;9:320.
Activins are growth factors acting on cell growth and differentiation. Activins are expressed in high grade breast tumors and they display an antiproliferative effect inducing G0/G1 cell cycle arrest in breast cancer cell lines. Follistatin and follistatin- related gene (FLRG) bind and neutralize activins. In order to establish if these activin binding proteins are involved in breast tumor progression, the present study evaluated follistatin and FLRG pattern of mRNA and protein expression in normal human breast tissue and in different breast proliferative diseases.
Paraffin embedded specimens of normal breast (NB - n = 8); florid hyperplasia without atypia (FH - n = 17); fibroadenoma (FIB - n = 17); ductal carcinoma in situ (DCIS - n = 10) and infiltrating ductal carcinoma (IDC - n = 15) were processed for follistatin and FLRG immunohistochemistry and in situ hybridization. The area and intensity of chromogen epithelial and stromal staining were analyzed semi-quantitatively.
Follistatin and FLRG were expressed both in normal tissue and in all the breast diseases investigated. Follistatin staining was detected in the epithelial cytoplasm and nucleus in normal, benign and malignant breast tissue, with a stronger staining intensity in the peri-alveolar stromal cells of FIB at both mRNA and protein levels. Conversely, FLRG area and intensity of mRNA and protein staining were higher both in the cytoplasm and in the nucleus of IDC epithelial cells when compared to NB, while no significant changes in the stromal intensity were observed in all the proliferative diseases analyzed.
The present findings suggest a role for follistatin in breast benign disease, particularly in FIB, where its expression was increased in stromal cells. The up regulation of FLRG in IDC suggests a role for this protein in the progression of breast malignancy. As activin displays an anti-proliferative effect in human mammary cells, the present findings indicate that an increased FST and FLRG expression in breast proliferative diseases might counteract the anti-proliferative effects of activin in human breast cancer.
PMCID: PMC2749060  PMID: 19740438

Results 1-2 (2)