PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Secreted frizzled-related protein 5 suppresses adipocyte mitochondrial metabolism through WNT inhibition 
The Journal of Clinical Investigation  2012;122(7):2405-2416.
Preadipocytes secrete several WNT family proteins that act through autocrine/paracrine mechanisms to inhibit adipogenesis. The activity of WNT ligands is often decreased by secreted frizzled-related proteins (SFRPs). Sfrp5 is strongly induced during adipocyte differentiation and increases in adipocytes during obesity, presumably to counteract WNT signaling. We tested the hypothesis that obesity-induced Sfrp5 expression promotes the development of new adipocytes by inhibiting endogenous suppressors of adipogenesis. As predicted, mice that lack functional SFRP5 were resistant to diet-induced obesity. However, counter to our hypothesis, we found that adipose tissue of SFRP5-deficient mice had similar numbers of adipocytes, but a reduction in large adipocytes. Transplantation of adipose tissue from SFRP5-deficient mice into leptin receptor–deficient mice indicated that the effects of SFRP5 deficiency are tissue-autonomous. Mitochondrial gene expression was increased in adipose tissue and cultured adipocytes from SFRP5-deficient mice. In adipocytes, lack of SFRP5 stimulated oxidative capacity through increased mitochondrial activity, which was mediated in part by PGC1α and mitochondrial transcription factor A. WNT3a also increased oxygen consumption and the expression of mitochondrial genes. Thus, our findings support a model of adipogenesis in which SFRP5 inhibits WNT signaling to suppress oxidative metabolism and stimulate adipocyte growth during obesity.
doi:10.1172/JCI63604
PMCID: PMC3386832  PMID: 22728933
2.  Daily energy balance in growth hormone receptor/binding protein (GHR−/−) gene-disrupted mice is achieved through an increase in dark-phase energy efficiency 
The goal of this study was to examine factors that contribute to energy balance in female GHR −/− mice. We measured energy intake, energy expenditure (EE), fuel utilization, body mass (Mb) changes and physical activity in 17 month-old female GHR −/− mice and their age-matched wild type littermates. The GHR −/− mice were smaller, consumed more food per unit Mb, had greater EE per unit Mb and had an increase in 24-h EE/Mb that was similar to the increase in their surface-area-to-volume ratio. Locomotor activity (LMA) was reduced in the GHR −/− mice, but the energetic cost associated with their LMA was greater than in wild type controls. Furthermore, Mb and LMA were independent explanatory covariates of most of the variance in EE, and when adjusted for Mb and LMA, the GHR −/− mice had higher EE during both the light and dark phases of the daily cycle. Respiratory quotient was lower in GHR −/− mice during the light phase, which indicated a greater utilization of lipid relative to carbohydrate in these mice. Additionally, GHR −/− mice had higher ratios of caloric intake to EE at several intervals during the dark phase, and this effect was greater and more sustained in the final three hours of the dark phase. Therefore, we conclude that GHR −/− mice are able to overcome the substantial energetic challenges of dwarfism through several mechanisms that promote stable Mb. Relative to wild type mice, the GHR −/− mice consumed more calories per unit Mb, which offset the disproportionate increase in their daily energy expenditure. While GHR −/− mice oxidized a greater proportion of lipid during the light phase in order to meet their energy requirements, they achieved greater energy efficiency and storage during the dark phase through a combination of higher energy consumption and lower LMA.
doi:10.1016/j.ghir.2009.08.002
PMCID: PMC2814926  PMID: 19747867
3.  Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps 
BMC Physiology  2011;11:1.
Background
We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.
Results
Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice.
Conclusions
These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. GhrR KO mice have an intact 1st phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of GhrR KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the GhrR KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.
doi:10.1186/1472-6793-11-1
PMCID: PMC3024223  PMID: 21211044
4.  Wnt10b Deficiency Promotes Coexpression of Myogenic and Adipogenic Programs in Myoblasts 
Molecular Biology of the Cell  2005;16(4):2039-2048.
Adult myoblasts retain plasticity in developmental potential and can be induced to undergo myogenic, adipogenic, or osteoblastogenic differentiation in vitro. In this report, we show that the balance between myogenic and adipogenic potential in myoblasts is controlled by Wnt signaling. Furthermore, this balance is altered during aging such that aspects of both differentiation programs are coexpressed in myoblasts due to decreased Wnt10b abundance. Mimicking Wnt signaling in aged myoblasts through inhibition of glycogen synthase kinase or through overexpression of Wnt10b resulted in inhibition of adipogenic gene expression and sustained or enhanced myogenic differentiation. On the other hand, myoblasts isolated from Wnt10b null mice showed increased adipogenic potential, likely contributing to excessive lipid accumulation in actively regenerating myofibers in vivo in Wnt10b-/- mice. Whereas Wnt10b deficiency contributed to increased adipogenic potential in myoblasts, the augmented myogenic differentiation potential observed is likely the result of a compensatory increase in Wnt7b during differentiation of Wnt10b-/- myoblasts. No such compensation was apparent in aged myoblasts and in fact, both Wnt5b and Wnt10b were down-regulated. Thus, alteration in Wnt signaling in myoblasts with age may contribute to impaired muscle regenerative capacity and to increased muscle adiposity, both characteristic of aged muscle.
doi:10.1091/mbc.E04-08-0720
PMCID: PMC1073681  PMID: 15673614
5.  Effects of Wnt Signaling on Brown Adipocyte Differentiation and Metabolism Mediated by PGC-1α 
Molecular and Cellular Biology  2005;25(4):1272-1282.
Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARγ and C/EBPα. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional expression of PGC-1α is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a β3-agonist. In differentiated brown adipocytes, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1α. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks expression of PGC-1α and UCP1, the presence of unilocular lipid droplets and expression of white adipocyte genes suggest conversion of brown adipose tissue to white. Reciprocal expression of Wnt10b with UCP1 and PGC-1α in interscapular tissue from cold-challenged or genetically obese mice provides further evidence for regulation of brown adipocyte metabolism by Wnt signaling. Taken together, these data suggest that activation of canonical Wnt signaling early in differentiation blocks brown adipogenesis, whereas activating Wnt signaling in mature brown adipocytes stimulates their conversion to white adipocytes.
doi:10.1128/MCB.25.4.1272-1282.2005
PMCID: PMC548004  PMID: 15684380
6.  Analysis of CUL-5 expression in breast epithelial cells, breast cancer cell lines, normal tissues and tumor tissues 
Molecular Cancer  2003;2:40.
Background
The chromosomal location of CUL-5 (11q 22-23) is associated with LOH in breast cancer, suggesting that CUL-5 may be a tumor suppressor. The purpose of this research was to determine if there is differential expression of CUL-5 in breast epithelial cells versus breast cancer cell lines, and normal human tissues versus human tumors. The expression of CUL-5 in breast epithelial cells (HMEC, MCF-10A), and breast cancer cells (MCF-7, MDA-MB-231) was examined using RT-PCR, Northern blot analysis, and Western blot analysis. The expression of mRNA for other CUL family members (CUL-1, -2, -3, -4A, and -4B) in these cells was evaluated by RT-PCR. A normal human tissue expression array and a cancer profiling array were used to examine CUL-5 expression in normal human tissues and matched normal tissues versus tumor tissues, respectively.
Results
CUL-5 is expressed at the mRNA and protein levels by breast epithelial cells (HMEC, MCF-10A) and breast cancer cells (MCF-7, MDA-MB-231). These cells also express mRNA for other CUL family members. The normal human tissue expression array revealed that CUL-5 is widely expressed. The cancer profiling array revealed that 82% (41/50) of the breast cancers demonstrated a decrease in CUL-5 expression versus the matched normal tissue. For the 50 cases of matched breast tissue there was a statistically significant ~2.2 fold decreased expression of CUL-5 in tumor tissue versus normal tissue (P < 0.0001).
Conclusions
The data demonstrate no apparent decrease in CUL-5 expression in the breast cancer cell lines (MCF-7, MDA-MB-231) versus the breast epithelial cells (HMEC, MCF-10A). The decrease in CUL-5 expression in breast tumor tissue versus matched normal tissue supports the hypothesis that decreased expression of CUL-5 may play a role in breast tumorigenesis.
doi:10.1186/1476-4598-2-40
PMCID: PMC317354  PMID: 14641918
7.  Microarray Analyses during Adipogenesis: Understanding the Effects of Wnt Signaling on Adipogenesis and the Roles of Liver X Receptor α in Adipocyte Metabolism 
Molecular and Cellular Biology  2002;22(16):5989-5999.
Wnt signaling maintains preadipocytes in an undifferentiated state. When Wnt signaling is enforced, 3T3-L1 preadipocytes no longer undergo adipocyte conversion in response to adipogenic medium. Here we used microarray analyses to identify subsets of genes whose expression is aberrant when differentiation is blocked through enforced Wnt signaling. Furthermore, we used the microarray data to identify potentially important adipocyte genes and chose one of these, the liver X receptor α (LXRα), for further analyses. Our studies indicate that enforced Wnt signaling blunts the changes in gene expression that correspond to mitotic clonal expansion, suggesting that Wnt signaling inhibits adipogenesis in part through dysregulation of the cell cycle. Experiments designed to uncover the potential role of LXRα in adipogenesis revealed that this transcription factor, unlike CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor gamma, is not adipogenic but rather inhibits adipogenesis if inappropriately expressed and activated. However, LXRα has several important roles in adipocyte function. Our studies show that this nuclear receptor increases basal glucose uptake and glycogen synthesis in 3T3-L1 adipocytes. In addition, LXRα increases cholesterol synthesis and release of nonesterified fatty acids. Finally, treatment of mice with an LXRα agonist results in increased serum levels of glycerol and nonesterified fatty acids, consistent with increased lipolysis within adipose tissue. These findings demonstrate new metabolic roles for LXRα and increase our understanding of adipogenesis.
doi:10.1128/MCB.22.16.5989-5999.2002
PMCID: PMC133961  PMID: 12138207

Results 1-7 (7)