PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Novel pathways in the pathobiology of human abdominal aortic aneurysms 
Objectives
Abdominal aortic aneurysm (AAA), a dilatation of the infrarenal aorta, typically affects males > 65 years. The pathobiological mechanisms of human AAA are poorly understood. The goal of this study was to identify novel pathways involved in the development of AAAs.
Methods
A custom-designed “AAA-chip” was used to assay 43 of the differentially expressed genes identified in a previously published microarray study between AAA (n = 15) and control (n = 15) infrarenal abdominal aorta. Protein analyses were performed on selected genes.
Results
Altogether 38 of the 43 genes on the “AAA-chip” showed significantly different expression. Novel validated genes in AAA pathobiology included ADCY7, ARL4C, BLNK, FOSB, GATM, LYZ, MFGE8, PRUNE2, PTPRC, SMTN, TMODI and TPM2. These genes represent a wide range of biological functions, such as calcium signaling, development and differentiation, as well as cell adhesion not previously implicated in AAA pathobiology. Protein analyses for GATM, CD4, CXCR4, BLNK, PLEK, LYZ, FOSB, DUSP6, ITGA5 and PTPRC confirmed the mRNA findings.
Conclusion
The results provide new directions for future research into AAA pathogenesis to study the role of novel genes confirmed here. New treatments and diagnostic tools for AAA could potentially be identified by studying these novel pathways.
doi:10.1159/000339303
PMCID: PMC3782105  PMID: 22797469
gene expression; vascular biology; aorta; abdominal aortic aneurysm
2.  Role of Complement Cascade in Abdominal Aortic Aneurysms 
Objective
The goal of this study was to investigate the role of complement cascade genes in the pathobiology of human abdominal aortic aneurysms (AAAs).
Methods and Results
Results of a genome-wide microarray expression profiling revealed 3,274 differentially expressed genes between aneurysmal and control aortic tissue. Interestingly, 13 genes in the complement cascade were significantly differentially expressed between AAA and the controls. In silico analysis of the promoters of the 13 complement cascade genes showed enrichment for transcription factor binding sites for STAT5A. Chromatin-immunoprecipitation experiments demonstrated binding of transcription factor STAT5A to the promoters of the majority of the complement cascade genes. Immunohistochemical analysis showed strong staining for C2 in AAA tissues.
Conclusions
These results provide strong evidence that the complement cascade plays a role in human AAA. Based on our microarray studies, the pathway is activated in AAA, particularly via the lectin and classical pathways. The overrepresented binding sites of transcription factor STAT5A in the complement cascade gene promoters suggest a role for STAT5A in the coordinated regulation of complement cascade gene expression.
doi:10.1161/ATVBAHA.111.227652
PMCID: PMC3712630  PMID: 21493888
Abdominal aortic aneurysm; complement cascade; genetic association study; STAT5; chromatin immunoprecipitation
3.  Regional expression of HOXA4 along the aorta and its potential role in human abdominal aortic aneurysms 
BMC Physiology  2011;11:9.
Background
The infrarenal abdominal aorta exhibits increased disease susceptibility relative to other aortic regions. Allograft studies exchanging thoracic and abdominal segments showed that regional susceptibility is maintained regardless of location, suggesting substantial roles for embryological origin, tissue composition and site-specific gene expression.
Results
We analyzed gene expression with microarrays in baboon aortas, and found that members of the HOX gene family exhibited spatial expression differences. HOXA4 was chosen for further study, since it had decreased expression in the abdominal compared to the thoracic aorta. Western blot analysis from 24 human aortas demonstrated significantly higher HOXA4 protein levels in thoracic compared to abdominal tissues (P < 0.001). Immunohistochemical staining for HOXA4 showed nuclear and perinuclear staining in endothelial and smooth muscle cells in aorta. The HOXA4 transcript levels were significantly decreased in human abdominal aortic aneurysms (AAAs) compared to age-matched non-aneurysmal controls (P < 0.00004). Cultured human aortic endothelial and smooth muscle cells stimulated with INF-γ (an important inflammatory cytokine in AAA pathogenesis) showed decreased levels of HOXA4 protein (P < 0.0007).
Conclusions
Our results demonstrated spatial variation in expression of HOXA4 in human aortas that persisted into adulthood and that downregulation of HOXA4 expression was associated with AAAs, an important aortic disease of the ageing population.
doi:10.1186/1472-6793-11-9
PMCID: PMC3125234  PMID: 21627813
4.  Progress toward genetic tailoring of heart failure therapy 
Heart failure (HF) is a modern epidemic and a heterogeneous disorder with many therapeutic options. While the average response to each individual treatment is favorable, significant interindividual variation exists in the response to HF therapeutics. As a result, the optimal regimen for an individual patient or subgroup of patients is elusive, with current treatment being mainly empirical. Pharmacogenetic customization of HF therapy may provide an important opportunity to improve the treatment of HF. Common genetic variations exist in genes related to most classes of HF drugs, many of which have known functional consequences for or established relationships with drug response. This review summarizes the current understanding of the pharmacogenetics of HF therapeutics, including angiotensin-converting enzyme inhibitors and β-blockers, and focuses on recent advances and medium-term expectations for the field.
PMCID: PMC3048822  PMID: 20521218
Aldosterone antagonist; angiotensin-converting enzyme inhibitor; angiotensin receptor blocker; β-blocker; heart failure; personalized medicine; pharmacogenetics
5.  Analysis of positional candidate genes in the AAA1 susceptibility locus for abdominal aortic aneurysms on chromosome 19 
BMC Medical Genetics  2011;12:14.
Background
Abdominal aortic aneurysm (AAA) is a complex disorder with multiple genetic risk factors. Using affected relative pair linkage analysis, we previously identified an AAA susceptibility locus on chromosome 19q13. This locus has been designated as the AAA1 susceptibility locus in the Online Mendelian Inheritance in Man (OMIM) database.
Methods
Nine candidate genes were selected from the AAA1 locus based on their function, as well as mRNA expression levels in the aorta. A sample of 394 cases and 419 controls was genotyped for 41 SNPs located in or around the selected nine candidate genes using the Illumina GoldenGate platform. Single marker and haplotype analyses were performed. Three genes (CEBPG, PEPD and CD22) were selected for DNA sequencing based on the association study results, and exonic regions were analyzed. Immunohistochemical staining of aortic tissue sections from AAA and control individuals was carried out for the CD22 and PEPD proteins with specific antibodies.
Results
Several SNPs were nominally associated with AAA (p < 0.05). The SNPs with most significant p-values were located near the CCAAT enhancer binding protein (CEBPG), peptidase D (PEPD), and CD22. Haplotype analysis found a nominally associated 5-SNP haplotype in the CEBPG/PEPD locus, as well as a nominally associated 2-SNP haplotype in the CD22 locus. DNA sequencing of the coding regions revealed no variation in CEBPG. Seven sequence variants were identified in PEPD, including three not present in the NCBI SNP (dbSNP) database. Sequencing of all 14 exons of CD22 identified 20 sequence variants, five of which were in the coding region and six were in the 3'-untranslated region. Five variants were not present in dbSNP. Immunohistochemical staining for CD22 revealed protein expression in lymphocytes present in the aneurysmal aortic wall only and no detectable expression in control aorta. PEPD protein was expressed in fibroblasts and myofibroblasts in the media-adventitia border in both aneurysmal and non-aneurysmal tissue samples.
Conclusions
Association testing of the functional positional candidate genes on the AAA1 locus on chromosome 19q13 demonstrated nominal association in three genes. PEPD and CD22 were considered the most promising candidate genes for altering AAA risk, based on gene function, association evidence, gene expression, and protein expression.
doi:10.1186/1471-2350-12-14
PMCID: PMC3037298  PMID: 21247474

Results 1-5 (5)