Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Conductance and block of hair-cell mechanotransducer channels in transmembrane channel–like protein mutants 
Proteins other than TMC1 and TMC2 must contribute to the pore of the mechanotransducer channel of cochlear hair cells; an external vestibule subject to disruption in Tmc mutants may influence the channel’s properties.
Transmembrane channel–like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after tip link destruction with BAPTA or after attenuating the MT current with GsMTx-4, a peptide toxin we found to block the channels with high affinity. In both cases, the MT channels in outer hair cells (OHCs) of wild-type mice displayed a tonotopic gradient in conductance, with channels from the cochlear base having a conductance (110 pS) nearly twice that of those at the apex (62 pS). This gradient was absent, with channels at both cochlear locations having similar small conductances, with two different Tmc1 mutations. The conductance of MT channels in inner hair cells was invariant with cochlear location but, as in OHCs, was reduced in either Tmc1 mutant. The gradient of OHC conductance also disappeared in Tmc1/Tmc2 double mutants, in which a mechanically sensitive current could be activated by anomalous negative displacements of the hair bundle. This “reversed stimulus–polarity” current was seen with two different Tmc1/Tmc2 double mutants, and with Tmc1/Tmc2/Tmc3 triple mutants, and had a pharmacological sensitivity comparable to that of native MT currents for most antagonists, except dihydrostreptomycin, for which the affinity was less, and for curare, which exhibited incomplete block. The existence in the Tmc1/Tmc2 double mutants of MT channels with most properties resembling those of wild-type channels indicates that proteins other than TMCs must be part of the channel pore. We suggest that an external vestibule of the MT channel may partly account for the channel’s large unitary conductance, high Ca2+ permeability, and pharmacological profile, and that this vestibule is disrupted in Tmc mutants.
PMCID: PMC4076520  PMID: 24981230
2.  Slc26a7 Chloride Channel Activity and Localization in Mouse Reissner’s Membrane Epithelium 
PLoS ONE  2014;9(5):e97191.
Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner’s membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner’s membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3− over Cl− and inhibited by I− and NPPB. Elevated NO3− currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl− transport in Reissner’s membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl− conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner’s membrane cells during local perturbations of pH.
PMCID: PMC4014619  PMID: 24810589
3.  The role of transmembrane channel–like proteins in the operation of hair cell mechanotransducer channels 
The Journal of General Physiology  2013;142(5):493-505.
Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel–like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca2+ at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca2+ with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca2+, even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca2+ permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex.
PMCID: PMC3813385  PMID: 24127526
4.  Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel–like proteins 
The Journal of General Physiology  2013;141(1):141-148.
Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel–like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca2+ permeability along the cochlea’s longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1−/−) or Tmc2 (Tmc2−/−). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ∼1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1−/− (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca2+ permeability, PCa, of the OHC MT channel decreased from cochlear apex to base. This gradient in PCa was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1−/− mice, PCa in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2−/−, PCa in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca2+ permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher PCa in IHCs and immature apical OHCs. Changes in PCa with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs.
PMCID: PMC3536526  PMID: 23277480
5.  Inward-rectifier chloride currents in Reissner’s membrane epithelial cells 
Sensory transduction in the cochlea depends on regulated ion secretion and absorption. Results of whole-organ experiments suggested that Reissner’s membrane may play a role in the control of luminal Cl−. We tested for the presence of Cl− transport pathways in isolated mouse Reissner’s membrane using whole-cell patch clamp recording and gene transcript analyses using RT-PCR. The current-voltage (I-V) relationship in the presence of symmetrical NMDG-Cl was strongly inward-rectifying at negative voltages, with a small outward current at positive voltages. The inward-rectifying component of the I-V curve had several properties similar to those of the ClC-2 Cl− channel. It was stimulated by extracellular acidity and inhibited by extracellular Cd2+, Zn2+, and intracellular ClC-2 antibody. Channel transcripts expressed include ClC-2, Slc26a7 and ClC-Ka, but not Cftr, ClC-1, ClCa1, ClCa2, ClCa3, ClCa4, Slc26a9, ClC-Kb, Best1, Best2, Best3 or the beta-subunit of ClC-K, barttin. ClC-2 is the only molecularly-identified channel present that is a strong inward rectifier. This study is the first report of conductive Cl− transport in epithelial cells of Reissner’s membrane and is consistent with an important role in endolymph anion homeostasis.
PMCID: PMC3086792  PMID: 20226170
Cl− channel; epithelial transport; cochlea
6.  Sodium selectivity of Reissner's membrane epithelial cells 
BMC Physiology  2011;11:4.
Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways.
We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath.
These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media.
PMCID: PMC3042420  PMID: 21284860

Results 1-6 (6)