PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus 
Obesity and its associated disorders are a major public health concern. Although obesity has been mainly related with perturbations of the balance between food intake and energy expenditure, other factors must nevertheless be considered. Recent insight suggests that an altered composition and diversity of gut microbiota could play an important role in the development of metabolic disorders. This review discusses research aimed at understanding the role of gut microbiota in the pathogenesis of obesity and type 2 diabetes mellitus (TDM2). The establishment of gut microbiota is dependent on the type of birth. With effect from this point, gut microbiota remain quite stable, although changes take place between birth and adulthood due to external influences, such as diet, disease and environment. Understand these changes is important to predict diseases and develop therapies. A new theory suggests that gut microbiota contribute to the regulation of energy homeostasis, provoking the development of an impairment in energy homeostasis and causing metabolic diseases, such as insulin resistance or TDM2. The metabolic endotoxemia, modifications in the secretion of incretins and butyrate production might explain the influence of the microbiota in these diseases.
doi:10.3389/fmicb.2014.00190
PMCID: PMC4010744  PMID: 24808896
gut microbiota; obesity; type 2 diabetes mellitus; inflammation; LPS; SCFA
2.  Gut Microbiota Composition in Male Rat Models under Different Nutritional Status and Physical Activity and Its Association with Serum Leptin and Ghrelin Levels 
PLoS ONE  2013;8(5):e65465.
Background
Several evidences indicate that gut microbiota is involved in the control of host energy metabolism.
Objective
To evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels.
Methods
In a case control study, forty male rats were randomly assigned to one of these four experimental groups: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR.
Results
In restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides–E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides–Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella.
Conclusions
Nutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism.
doi:10.1371/journal.pone.0065465
PMCID: PMC3665787  PMID: 23724144
3.  Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study 
BMC Medicine  2013;11:46.
Background
A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level.
Methods
A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction.
Results
The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group.
Conclusions
This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.
doi:10.1186/1741-7015-11-46
PMCID: PMC3621820  PMID: 23433344
butyrate-producing bacteria; glycemic level; gut integrity; gut microbiota; gut permeability; HbA1c level; lactic acid-producing bacteria; mode of delivery; mucin; PCR-DGGE; type 1 diabetes
4.  FABP4 Dynamics in Obesity: Discrepancies in Adipose Tissue and Liver Expression Regarding Circulating Plasma Levels 
PLoS ONE  2012;7(11):e48605.
Background
FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.
Objective
In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.
Methods
The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.
Results
In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.
Conclusion
The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.
doi:10.1371/journal.pone.0048605
PMCID: PMC3489666  PMID: 23139800
5.  Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels 
BMC Physiology  2012;12:4.
Background
The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR).
Results
Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC) and omentum (OM) adipose tissues from morbidly obese patients (n = 26) with low (OB/L-IR) (healthy obese) and high (OB/H-IR) degrees of IR, and lean controls (n = 17). Another objective was to examine angiogenic factor correlations with obesity and IR.
Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM.
Conclusion
We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.
doi:10.1186/1472-6793-12-4
PMCID: PMC3382430  PMID: 22471305
Vascular Endothelial Growth Factor and Metalloproteinase; Obesity; Insulin Resistance; Omentum Adipose Tissue; Subcutaneous Adipose Tissue
6.  Adipose Tissue Gene Expression of Factors Related to Lipid Processing in Obesity 
PLoS ONE  2011;6(9):e24783.
Background
Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR).
Methods and Principal Findings
VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT.
Conclusions
Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons.
doi:10.1371/journal.pone.0024783
PMCID: PMC3178563  PMID: 21966368
7.  VEGF Gene Expression in Adult Human Thymus Fat: A Correlative Study with Hypoxic Induced Factor and Cyclooxigenase-2 
PLoS ONE  2009;4(12):e8213.
It is well known that the adult human thymus degenerates into fat tissue; however, it has never been considered as a potential source of angiogenic factors. Recently, we have described that this fat (TAT) produces angiogenic factors and induces human endothelial cell proliferation and migration, indicating its potential angiogenic properties.
Design
Adult thymus fat and subcutaneous adipose tissue specimens were obtained from 28 patients undergoing cardiac surgery, making this tissue readily available as a prime source of adipose tissue. We focused our investigation on determining VEGF gene expression and characterizing the different genes, mediators of inflammation and adipogenesis, and which are known to play a relevant role in angiogenesis regulation.
Results
We found that VEGF-A was the isoform most expressed in TAT. This expression was accompanied by an upregulation of HIF-1α, COX-2 and HO-1 proteins, and by increased HIF-1 DNA binding activity, compared to SAT. Furthermore, we observed that TAT contains a high percentage of mature adipocytes, 0.25% of macrophage cells, 15% of endothelial cells and a very low percentage of thymocyte cells, suggesting the cellular variability of TAT, which could explain the differences in gene expression observed in TAT. Subsequently, we showed that the expression of genes known as adipogenic mediators, including PPARγ1/γ2, FABP-4 and adiponectin was similar in both TAT and SAT. Moreover the expression of these latter genes presented a significantly positive correlation with VEGF, suggesting the potential association between VEGF and the generation of adipose tissue in adult thymus.
Conclusion
Here we suggest that this fat has a potential angiogenic function related to ongoing adipogenesis, which substitutes immune functions within the adult thymus. The expression of VEGF seems to be associated with COX-2, HO-1 and adipogenesis related genes, suggesting the importance that this new fat has acquired in research in relation to adipogenesis and angiogenesis.
doi:10.1371/journal.pone.0008213
PMCID: PMC2788242  PMID: 20011601

Results 1-7 (7)