Search tips
Search criteria

Results 1-20 (20)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults 
Nutrients  2015;7(7):5347-5361.
Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD)); body mass index (BMI) 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water), carbohydrate (maltodextrin) or lipid (dairy-cream). Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h), as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1), interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03) and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001) decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.
PMCID: PMC4517001  PMID: 26140541
adipokine; adipose tissue; biopsy; inflammation; postprandial
3.  Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men 
The phosphorylation of p70S6 Kinase (p70S6K) is an important step in the initiation of protein translation. p70S6K phosphorylation is enhanced with graded intakes of whey protein after resistance exercise. Soy protein ingestion results in lower muscle protein synthesis after exercise compared with whey; however, the underlying mechanisms responsible for this difference have not been reported.
13 older men (60–75) completed an acute bout of lower body resistance exercise and ingested 30 g of soy protein or carbohydrate. Muscle biopsies were obtained in the rested and fasted state and 2 and 4 hours post exercise. Phosphorylation status of p70S6K was measured with western blot. Results were compared with previously reported data from the ingestion of 30 g of whey protein or placebo. p70S6K phosphorylation was increased 2, but not 4 hours post exercise with soy protein ingestion. p70S6K phosphorylation was not increased post exercise with carbohydrate ingestion.
Ingesting 30 g of either whey or soy protein resulted in equivalent p70S6K phosphorylation at 2 hours post exercise, however, unlike whey, soy protein failed to promote prolonged phosphorylation of p70S6K to 4 hours post-exercise.
PMCID: PMC4324640  PMID: 25674042
Anabolic signalling; Supplementation; Aging; Sarcopenia
4.  Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA 
Scientific Reports  2015;5:7928.
We evaluated the quality and content of fish oil supplements in New Zealand. All encapsulated fish oil supplements marketed in New Zealand were eligible for inclusion. Fatty acid content was measured by gas chromatography. Peroxide values (PV) and anisidine values (AV) were measured, and total oxidation values (Totox) calculated. Only 3 of 32 fish oil supplements contained quantities of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that were equal or higher than labelled content, with most products tested (69%) containing <67%. The vast majority of supplements exceeded recommended levels of oxidation markers. 83% products exceeded the recommended PV levels, 25% exceeded AV thresholds, and 50% exceeded recommended Totox levels. Only 8% met the international recommendations, not exceeding any of these indices. Almost all fish oil supplements available in the New Zealand market contain concentrations of EPA and DHA considerably lower than claimed by labels. Importantly, the majority of supplements tested exceeded the recommended indices of oxidative markers. Surprisingly, best-before date, cost, country of origin, and exclusivity were all poor markers of supplement quality.
PMCID: PMC4300506  PMID: 25604397
5.  It is not just muscle mass: a review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life 
Worldwide estimates predict 2 billion people will be aged over 65 years by 2050. A major current challenge is maintaining mobility and quality of life into old age. Impaired mobility is often a precursor of functional decline, disability and loss of independence. Sarcopenia which represents the age-related decline in muscle mass is a well-established factor associated with mobility limitations in older adults. However, there is now evidence that not only changes in muscle mass but other factors underpinning muscle quality including composition, metabolism, aerobic capacity, insulin resistance, fat infiltration, fibrosis and neural activation may also play a role in the decline in muscle function and impaired mobility associated with ageing. Importantly, changes in muscle quality may precede loss of muscle mass and therefore provide new opportunities for the assessment of muscle quality particularly in middle-aged adults who could benefit from interventions to improve muscle function. This review will discuss the accumulating evidence that in addition to muscle mass, factors underpinning muscle quality influence muscle function and mobility with age. Further development of tools to assess muscle quality in community settings is needed. Preventative diet, exercise or treatment interventions particularly in middle-aged adults at the low end of the spectrum of muscle function may help preserve mobility in later years and improve healthspan.
PMCID: PMC4268803  PMID: 25520782
Muscle mass; Muscle composition; Muscle metabolism; Muscle function; Mobility; Ageing; Sarcopenia
6.  Ibuprofen supplementation and its effects on NF‐κB activation in skeletal muscle following resistance exercise 
Physiological Reports  2014;2(10):e12172.
Resistance exercise triggers a subclinical inflammatory response that plays a pivotal role in skeletal muscle regeneration. Nuclear factor‐κB (NF‐κB) is a stress signalling transcription factor that regulates acute and chronic states of inflammation. The classical NF‐κB pathway regulates the early activation of post‐exercise inflammation; however there remains scope for this complex transcription factor to play a more detailed role in post‐exercise muscle recovery. Sixteen volunteers completed a bout of lower body resistance exercise with the ingestion of three 400 mg doses of ibuprofen or a placebo control. Muscle biopsy samples were obtained prior to exercise and at 0, 3 and 24 h post‐exercise and analysed for key markers of NF‐κB activity. Phosphorylated p65 protein expression and p65 inflammatory target genes were elevated immediately post‐exercise independent of the two treatments. These changes did not translate to an increase in p65 DNA binding activity. NF‐κB p50 protein expression and NF‐κB p50 binding activity were lower than pre‐exercise at 0 and 3 h post‐exercise, but were elevated at 24 h post‐exercise. These findings provide novel evidence that two distinct NF‐κB pathways are active in skeletal muscle after resistance exercise. The initial wave of activity involving p65 resembles the classical pathway and is associated with the onset of an acute inflammatory response. The second wave of NF‐κB activity comprises the p50 subunit, which has been previously shown to resolve an acute inflammatory program. The current study showed no effect of the ibuprofen treatment on markers of the NF‐κB pathway, however examination of the within group effects of the exercise protocol suggests that this pathway warrants further research.
The current study aimed to explore the regulation of the NF‐κB pathway following an acute bout of resistance exercise. Findings demonstrated two distinct phases of NF‐κB activity: an initial wave of activity comprising the p65 subunit, and a delayed second wave involving the p50 subunit.
PMCID: PMC4254097  PMID: 25344476
Exercise recovery; inflammation; NF‐κB; NSAID treatment; resistance exercise
7.  Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial 
The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding.
The responsiveness of mTOR pathway targets such as p706Sk to a high protein meal containing either dairy or soy foods was investigated in healthy insulin sensitive middle-aged men and those presenting with metabolic syndrome (MetS). Twenty male subjects (10 healthy controls, 10 MetS) participated in a single-blinded randomized cross-over study. In a random sequence, subjects ingested energy-matched breakfasts composed predominately of either dairy-protein or soy-protein foods. Skeletal muscle biopsies were collected in the fasted state and at 2 and 4 h post-meal ingestion for the analysis of mTOR- and insulin-signalling kinase activation.
Phosphorylated Akt and Insulin receptor substrate 1 (IRS1) increased during the postabsorptive period with no difference between groups. mTOR (Ser448) and ribosomal protein S6 phosphorylation increased 2 h following dairy meal consumption only. p70S6K (Thr389) phosphorylation was increased after feeding only in the control subjects and not in the MetS group.
These data demonstrate that the consumption of a dairy-protein rich but not a soy-protein rich breakfast activates the phosphorylation of mTOR and ribosomal protein S6, required for protein synthesis in human skeletal muscle. Unlike healthy controls, subjects with MetS did not increase muscle p70S6K(Thr389) phosphorylation in response to a mixed meal.
Trial registration
This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) as ACTRN12610000562077.
PMCID: PMC4190399  PMID: 25302072
8.  Dose‐dependent increases in p70S6K phosphorylation and intramuscular branched‐chain amino acids in older men following resistance exercise and protein intake 
Physiological Reports  2014;2(8):e12112.
Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60–75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography–Mass Spectrometry (GC‐MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise‐induced declines in intramuscular BCAAs.
In older men, p70S6K phosphorylation is increased in a dose‐dependent manner with increasing doses of whey protein intake after resistance exercise. Resistance exercise reduces intramuscular concentrations of branched‐chain amino acids but whey protein intake post exercise maintains these concentrations.
PMCID: PMC4246588  PMID: 25107987
Leucine; mammalian target of rapamycin; mass spectrometry; muscle mass; protein synthesis; sarcopenia
9.  3T3-L1 Preadipocytes Exhibit Heightened Monocyte-Chemoattractant Protein-1 Response to Acute Fatty Acid Exposure 
PLoS ONE  2014;9(6):e99382.
Preadipocytes contribute to the inflammatory responses within adipose tissue. Whilst fatty acids are known to elicit an inflammatory response within adipose tissue, the relative contribution of preadipocytes and mature adipocytes to this is yet to be determined. We aimed to examine the actions of common dietary fatty acids on the acute inflammatory and adipokine response in 3T3-L1 preadipocytes and differentiated mature adipocytes. Gene expression levels of key adipokines in 3T3-L1 preadipocytes and adipocytes were determined following incubation with palmitic acid, myristic acid or oleic acid and positive inflammatory control, lipopolysaccharide for 2 and 4 h. Inflammatory kinase signalling was assessed by analysis of nuclear factor-κB, p38-mitogen-activated protein kinase and c-jun amino-terminal kinase phosphorylation. Under basal conditions, intracellular monocyte chemoattractant protein-1 and interleukin-6 gene expression levels were increased in preadipocytes, whereas mature adipocytes expressed increased gene expression levels of leptin and adiponectin. Fatty acid exposure at 2 and 4 h increased both monocyte chemoattractant protein-1 and interleukin-6 gene expression levels in preadipocytes to greater levels than in mature adipocytes. There was an accompanying increase of inhibitor of κB-α degradation and nuclear factor-κB (p65) (Ser536) phosphorylation with fatty acid exposure in the preadipocytes only. The current study points to preadipocytes rather than the adipocytes as the contributors to both immune cell recruitment and inflammatory adipokine secretion with acute increases in fatty acids.
PMCID: PMC4049800  PMID: 24911931
10.  Effects of Intermittent Training on Anaerobic Performance and MCT Transporters in Athletes 
PLoS ONE  2014;9(5):e95092.
This study examined the effects of intermittent hypoxic training (IHT) on skeletal muscle monocarboxylate lactate transporter (MCT) expression and anaerobic performance in trained athletes. Cyclists were assigned to two interventions, either normoxic (N; n = 8; 150 mmHg PIO2) or hypoxic (H; n = 10; ∼3000 m, 100 mmHg PIO2) over a three week training (5×1 h-1h30.week−1) period. Prior to and after training, an incremental exercise test to exhaustion (EXT) was performed in normoxia together with a 2 min time trial (TT). Biopsy samples from the vastus lateralis were analyzed for MCT1 and MCT4 using immuno-blotting techniques. The peak power output (PPO) increased (p<0.05) after training (7.2% and 6.6% for N and H, respectively), but VO2max showed no significant change. The average power output in the TT improved significantly (7.3% and 6.4% for N and H, respectively). No differences were found in MCT1 and MCT4 protein content, before and after the training in either the N or H group. These results indicate there are no additional benefits of IHT when compared to similar normoxic training. Hence, the addition of the hypoxic stimulus on anaerobic performance or MCT expression after a three-week training period is ineffective.
PMCID: PMC4010422  PMID: 24797797
11.  Is carbohydrate needed to further stimulate muscle protein synthesis/hypertrophy following resistance exercise? 
It is now well established that protein supplementation after resistance exercise promotes increased muscle protein synthesis, which ultimately results in greater net muscle accretion, relative to exercise alone or exercise with supplementary carbohydrate ingestion. However, it is not known whether combining carbohydrate with protein produces a greater anabolic response than protein alone. Recent recommendations have been made that the composition of the ideal supplement post-exercise would be a combination of a protein source with a high glycemic index carbohydrate. This is based on the hypothesis that insulin promotes protein synthesis, thus maximising insulin secretion will maximally potentiate this action. However, it is still controversial as to whether raising insulin level, within the physiological range, has any effect to further stimulate muscle protein synthesis. The present commentary will review the evidence underpinning the recommendation to consume carbohydrates in addition to a protein supplementation after resistance exercise for the specific purpose of increasing muscle mass. The paucity of data will be discussed, thus our conclusions are that further studies are necessary prior to any conclusions that enable evidence-based recommendations to be made.
PMCID: PMC3850644  PMID: 24066806
Leucine; Insulin; Glycemic index; Skeletal muscle; Dietary supplements; Whey protein; Lean body mass
12.  Oxidation of Marine Omega-3 Supplements and Human Health 
BioMed Research International  2013;2013:464921.
Marine omega-3 rich oils are used by more than a third of American adults for a wide range of purported benefits including prevention of cardiovascular disease. These oils are highly prone to oxidation to lipid peroxides and other secondary oxidation products. Oxidized oils may have altered biological activity making them ineffective or harmful, though there is also evidence that some beneficial effects of marine oils could be mediated through lipid peroxides. To date, human clinical trials have not reported the oxidative status of the trial oil. This makes it impossible to understand the importance of oxidation to efficacy or harm. However, animal studies show that oxidized lipid products can cause harm. Oxidation of trial oils may be responsible for the conflicting omega-3 trial literature, including the prevention of cardiovascular disease. The oxidative state of an oil can be simply determined by the peroxide value and anisidine value assays. We recommend that all clinical trials investigating omega-3 harms or benefits report the results of these assays; this will enable better understanding of the benefits and harms of omega-3 and the clinical importance of oxidized supplements.
PMCID: PMC3657456  PMID: 23738326
13.  Psyllium Supplementation in Adolescents Improves Fat Distribution & Lipid Profile: A Randomized, Participant-Blinded, Placebo-Controlled, Crossover Trial 
PLoS ONE  2012;7(7):e41735.
We aimed to assess the effects of psyllium supplementation on insulin sensitivity and other parameters of the metabolic syndrome in an at risk adolescent population.
This study encompassed a participant-blinded, randomized, placebo-controlled, crossover trial. Subjects were 47 healthy adolescent males aged 15–16 years, recruited from secondary schools in lower socio-economic areas with high rates of obesity. Participants received 6 g/day of psyllium or placebo for 6 weeks, with a two-week washout before crossing over. Fasting lipid profiles, ambulatory blood pressure, auxological data, body composition, activity levels, and three-day food records were collected at baseline and after each 6-week intervention. Insulin sensitivity was measured by the Matsuda method using glucose and insulin values from an oral glucose tolerance test.
45 subjects completed the study, and compliance was very high: 87% of participants took >80% of prescribed capsules. At baseline, 44% of subjects were overweight or obese. 28% had decreased insulin sensitivity, but none had impaired glucose tolerance. Fibre supplementation led to a 4% reduction in android fat to gynoid fat ratio (p = 0.019), as well as a 0.12 mmol/l (6%) reduction in LDL cholesterol (p = 0.042). No associated adverse events were recorded.
Dietary supplementation with 6 g/day of psyllium over 6 weeks improves fat distribution and lipid profile (parameters of the metabolic syndrome) in an at risk population of adolescent males.
Trial Registration
Australian New Zealand Clinical Trials Registry ACTRN12609000888268
PMCID: PMC3407232  PMID: 22848584
14.  The characterisation of Abelson Helper Integration Site-1 in skeletal muscle and its links to the metabolic syndrome 
The human Abelson helper integration site-1 (AHI1) gene is associated with both neurological and haematological disorders; however, it is also located in a chromosomal region linked to metabolic syndrome phenotypes and was identified as a type 2 diabetes susceptibility gene from a genome-wide association study. To further define a possible role in type 2 diabetes development, AHI1 mRNA expression levels were investigated in a range of tissues and found to be highly expressed in skeletal muscle as well as displaying elevated levels in brain regions and gonad tissues. Further analysis in a rodent, polygenic animal model of obesity and type 2 diabetes identified increased Ahi-1 mRNA levels in red gastrocnemius muscle from fasted impaired glucose tolerant and diabetic rodents compared with normal animals (p<0.002). Moreover, elevated gene expression levels were confirmed in skeletal muscle from fasted obese and type 2 diabetic human subjects (p≤0.02). RNAi-mediated suppression of Ahi-1 resulted in increased glucose transport in rat L6 myotubes in both the basal and insulin-stimulated states (p<0.01). Finally, SNP association studies identified two novel AHI1 genetic variants linked with fasting blood glucose levels in Mexican American subjects (p<0.037). These findings indicate a novel role for AHI1 in skeletal muscle and identify additional genetic links with metabolic syndrome phenotypes suggesting an involvement of AHI1 in the maintenance of glucose homeostasis and type 2 diabetes progression.
PMCID: PMC3249385  PMID: 20045148
15.  The actions of exogenous leucine on mTOR signalling and amino acid transporters in human myotubes 
BMC Physiology  2011;11:10.
The branched-chain amino acid (BCAA) leucine has been identified to be a key regulator of skeletal muscle anabolism. Activation of anabolic signalling occurs via the mammalian target of rapamycin (mTOR) through an undefined mechanism. System A and L solute carriers transport essential amino acids across plasma membranes; however it remains unknown whether an exogenous supply of leucine regulates their gene expression. The aim of the present study was to investigate the effects of acute and chronic leucine stimulation of anabolic signalling and specific amino acid transporters, using cultured primary human skeletal muscle cells.
Human myotubes were treated with leucine, insulin or co-treated with leucine and insulin for 30 min, 3 h or 24 h. Activation of mTOR signalling kinases were examined, together with putative nutrient sensor human vacuolar protein sorting 34 (hVps34) and gene expression of selected amino acid transporters. Phosphorylation of mTOR and p70S6K was transiently increased following leucine exposure, independently to insulin. hVps34 protein expression was also significantly increased. However, genes encoding amino acid transporters were differentially regulated by insulin and not leucine.
mTOR signalling is transiently activated by leucine within human myotubes independently of insulin stimulation. While this occurred in the absence of changes in gene expression of amino acid transporters, protein expression of hVps34 increased.
PMCID: PMC3141572  PMID: 21702994
16.  JAK/STAT signaling and human in vitro myogenesis 
BMC Physiology  2011;11:6.
A population of satellite cells exists in skeletal muscle. These cells are thought to be primarily responsible for postnatal muscle growth and injury-induced muscle regeneration. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade has a crucial role in regulating myogenesis. In rodent skeletal muscle, STAT3 is essential for satellite cell migration and myogenic differentiation, regulating the expression of myogenic factors. The aim of the present study was to investigate and compare the expression profile of JAK/STAT family members, using cultured primary human skeletal muscle cells.
Near confluent proliferating myoblasts were induced to differentiate for 1, 5 or 10 days. During these developmental stages, members of the JAK/STAT family were examined, along with factors known to regulate myogenesis. We demonstrate the phosphorylation of JAK1 and STAT1 only during myoblast proliferation, while JAK2 and STAT3 phosphorylation increases during differentiation. These increases were correlated with the upregulation of genes associated with muscle maturation and hypertrophy.
Taken together, these results provide insight into JAK/STAT signaling in human skeletal muscle development, and confirm recent observations in rodents.
PMCID: PMC3063215  PMID: 21388555
17.  Alcohol, Athletic Performance and Recovery 
Nutrients  2010;2(8):781-789.
Alcohol consumption within elite sport has been continually reported both anecdotally within the media and quantitatively in the literature. The detrimental effects of alcohol on human physiology have been well documented, adversely influencing neural function, metabolism, cardiovascular physiology, thermoregulation and skeletal muscle myopathy. Remarkably, the downstream effects of alcohol consumption on exercise performance and recovery, has received less attention and as such is not well understood. The focus of this review is to identify the acute effects of alcohol on exercise performance and give a brief insight into explanatory factors.
PMCID: PMC3257708  PMID: 22254055
ethanol;  skeletal muscle;  glycogen;  protein synthesis
18.  Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes 
Lipid droplet (LD) formation and size regulation reflects both lipid influx and efflux, and is central in the regulation of adipocyte metabolism, including adipokine secretion. The length and degree of dietary fatty acid (FA) unsaturation is implicated in LD formation and regulation in adipocytes. The aims of this study were to establish the impact of eicosapentaenoic acid (EPA; C20:5n-3) in comparison to SFA (STA; stearic acid, C18:0) and MUFA (OLA; oleic acid, C18:1n-9) on 3T3-L1 adipocyte LD formation, regulation of genes central to LD function and adipokine responsiveness. Cells were supplemented with 100 μM FA during 7-day differentiation.
EPA markedly reduced LD size and total lipid accumulation, suppressing PPARγ, Cidea and D9D/SCD1 genes, distinct from other treatments. These changes were independent of alterations of lipolytic genes, as both EPA and STA similarly elevated LPL and HSL gene expressions. In response to acute lipopolysaccharide exposure, EPA-differentiated adipocytes had distinct improvement in inflammatory response shown by reduction in monocyte chemoattractant protein-1 and interleukin-6 and elevation in adiponectin and leptin gene expressions.
This study demonstrates that EPA differentially modulates adipogenesis and lipid accumulation to suppress LD formation and size. This may be due to suppressed gene expression of key proteins closely associated with LD function. Further analysis is required to determine if EPA exerts a similar influence on LD formation and regulation in-vivo.
PMCID: PMC2895668  PMID: 20525346
20.  Whey Protein Ingestion Activates mTOR-dependent Signalling after Resistance Exercise in Young Men: A Double-Blinded Randomized Controlled Trial  
Nutrients  2009;1(2):263-275.
The effect of resistance exercise with the ingestion of supplementary protein on the activation of the mTOR cascade, in human skeletal muscle has not been fully elucidated. In this study, the impact of a single bout of resistance exercise, immediately followed by a single dose of whey protein isolate (WPI) or placebo supplement, on the activation of mTOR signalling was analyzed. Young untrained men completed a maximal single-legged knee extension exercise bout and were randomized to ingest either WPI supplement (n = 7) or the placebo (n = 7). Muscle biopsies were taken from the vastus lateralis before, and 2, 4 and 24 h post-exercise. WPI or placebo ingestion consumed immediately post-exercise had no impact on the phosphorylation of Akt (Ser473). However, WPI significantly enhanced phosphorylation of mTOR (Ser2448), 4E-BP1 (Thr37/46) and p70S6K (Thr389) at 2 h post-exercise. This study demonstrates that a single dose of WPI, when consumed in modest quantities, taken immediately after resistance exercise elicits an acute and transient activation of translation initiation within the exercised skeletal muscle.
PMCID: PMC3257597  PMID: 22253983
leucine; BCAA; p70S6K; 4E-BP1; resistance exercise

Results 1-20 (20)