PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points 
Background
Two commercially available microneedle rollers with a needle length of 200 μm and 300 μm were selected to examine the influence of microneedle pretreatment on the percutaneous permeation of four non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen, paracetamol) with different physicochemical drug characteristics in Franz-type diffusion cells. Samples of the receptor fluids were taken at predefined times over 6 hours and were analysed by UV–VIS high-performance liquid-chromatography. Histological examinations after methylene blue application were additionally performed to gather information about barrier disruption.
Results
Despite no visible pores in the stratum corneum, the microneedle pretreatment resulted in a twofold (200 μm) and threefold higher (300 μm) flux through the pretreated skin samples compared to untreated skin samples for ibuprofen and ketoprofen (LogKow > 3, melting point < 100°C). The flux of the hydrophilic compounds diclofenac and paracetamol (logKow < 1, melting point > 100°C) increased their amount by four (200 μm) to eight (300 μm), respectively.
Conclusion
Commercially available microneedle rollers with 200–300 μm long needles enhance the drug delivery of topically applied non-steroidal anti-inflammatory drugs and represent a valuable tool for percutaneous permeation enhancement particularly for substances with poor permeability due to a hydrophilic nature and high melting points.
doi:10.1186/2050-6511-13-5
PMCID: PMC3506268  PMID: 22947102
Transdermal drug delivery; Microneedles; logKow; Melting point; Non-steroidal anti-inflammatory drug; In vitro permeation study; Physical penetration enhancement
2.  The effect of formulation vehicles on the in vitro percutaneous permeation of ibuprofen 
BMC Pharmacology  2011;11:12.
Background
The transdermal application of substances represents an elegant approach to overcome side effects related to injections or oral treatment. Due to benefits like a constant plasma level, no pain during application and a simple therapeutic regime, the optimization of formulations for transdermal drug delivery has gained interest in the last decades. Ibuprofen is a non-steroidal anti-inflammatory compound which is nowadays often used transdermally. The objective of this work was to conduct a study on the effect of different 5% ibuprofen containing formulations (Ibutop® cream, Ibutop® gel, and ibuprofen solution in phosphate buffered saline) on the in vitro-percutaneous permeation of ibuprofen through skin to emphasise the importance of the formulation on percutaneous permeation and skin reservoir.
Methods
The permeation experiments were conducted in Franz-type diffusion cells according to OECD guideline 428 with 2 mg/cm2 ibuprofen formulation on each skin sample. Ibuprofen was analysed in the receptor fluid and extracted skin samples by UV-VIS high-performance liquid-chromatography at 238 nm. The plot of the cumulative amount of ibuprofen permeated versus time was employed to calculate the apparent permeability coefficient, the maximum flux and the lagtime, all of which were statistically analysed by One-way ANOVA.
Results
Although ibuprofen permeation out of the gel increases rapidly within the first four hours, the cream produced the highest ibuprofen delivery through the skin within 28 hours, followed by the solution and the gel. A significant shorter lagtime was found after gel treatment compared with the cream and the solution. After 28 hours 59% of the applied ibuprofen was found in the receptor fluid of the cream treated samples, 26% in the solution treated samples and 21% in the samples treated with the gel. Fourfold higher ibuprofen reservoirs were found in the solution and gel treated skin samples compared to the cream treated skin samples.
Conclusion
The present study demonstrates the importance of the formulation on transdermal drug delivery of ibuprofen and emphasises the differences of drug storage within the skin due to the formulation. Thus, it is a mistaken assumption that formulations comprising the same drug amount are equivalent regarding skin permeability.
doi:10.1186/1471-2210-11-12
PMCID: PMC3259031  PMID: 22168832

Results 1-2 (2)