Search tips
Search criteria

Results 1-17 (17)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Myeloperoxidase-Derived Oxidants Induce Blood-Brain Barrier Dysfunction In Vitro and In Vivo 
PLoS ONE  2013;8(5):e64034.
Peripheral leukocytes can exacerbate brain damage by release of cytotoxic mediators that disrupt blood-brain barrier (BBB) function. One of the oxidants released by activated leukocytes is hypochlorous acid (HOCl) formed via the myeloperoxidase (MPO)-H2O2-Cl− system. In the present study we examined the role of leukocyte activation, leukocyte-derived MPO and MPO-generated oxidants on BBB function in vitro and in vivo. In a mouse model of lipopolysaccharide (LPS)-induced systemic inflammation, neutrophils that had become adherent released MPO into the cerebrovasculature. In vivo, LPS-induced BBB dysfunction was significantly lower in MPO-deficient mice as compared to wild-type littermates. Both, fMLP-activated leukocytes and the MPO-H2O2-Cl− system inflicted barrier dysfunction of primary brain microvascular endothelial cells (BMVEC) that was partially rescued with the MPO inhibitor 4-aminobenzoic acid hydrazide. BMVEC treatment with the MPO-H2O2-Cl− system or activated neutrophils resulted in the formation of plasmalogen-derived chlorinated fatty aldehydes. 2-chlorohexadecanal (2-ClHDA) severely compromised BMVEC barrier function and induced morphological alterations in tight and adherens junctions. In situ perfusion of rat brain with 2-ClHDA increased BBB permeability in vivo. 2-ClHDA potently activated the MAPK cascade at physiological concentrations. An ERK1/2 and JNK antagonist (PD098059 and SP600125, respectively) protected against 2-ClHDA-induced barrier dysfunction in vitro. The current data provide evidence that interference with the MPO pathway could protect against BBB dysfunction under (neuro)inflammatory conditions.
PMCID: PMC3653856  PMID: 23691142
2.  Environmental Enrichment and Gut Inflammation Modify Stress-Induced c-Fos Expression in the Mouse Corticolimbic System 
PLoS ONE  2013;8(1):e54811.
Environmental enrichment (EE) has a beneficial effect on rodent behaviour, neuronal plasticity and brain function. Although it may also improve stress coping, it is not known whether EE influences the brain response to an external (psychological) stressor such as water avoidance stress (WAS) or an internal (systemic) stressor such as gastrointestinal inflammation. This study hence explored whether EE modifies WAS-induced activation of the mouse corticolimbic system and whether this stress response is altered by gastritis or colitis. Male C67BL/6N mice were housed under standard or enriched environment for 9 weeks, after which they were subjected to a 1-week treatment with oral iodoacetamide to induce gastritis or oral dextran sulfate sodium to induce colitis. Following exposure to WAS the expression of c-Fos, a marker of neuronal activation, was measured by immunocytochemistry. EE aggravated experimentally induced colitis, but not gastritis, as shown by an increase in the disease activity score and the colonic myeloperoxidase content. In the brain, EE enhanced the WAS-induced activation of the dentate gyrus and unmasked an inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression within this part of the hippocampus. Conversely, EE inhibited the WAS-evoked activation of the central amygdala and prevented the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this region. EE, in addition, blunted the WAS-induced activation of the infralimbic cortex and attenuated the inhibitory effect of gastritis and colitis on WAS-evoked c-Fos expression in this area. These data reveal that EE has a region-specific effect on stress-induced c-Fos expression in the corticolimbic system, which is likely to improve stress resilience. The response of the prefrontal cortex – amygdala – hippocampus circuitry to psychological stress is also modified by the systemic stress of gut inflammation, and this interaction between external and internal stressors is modulated by the housing environment.
PMCID: PMC3547954  PMID: 23349972
3.  Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis 
Neuropeptides  2012;46(6):261-274.
The gut–brain axis refers to the bidirectional communication between the gut and the brain. Four information carriers (vagal and spinal afferent neurons, immune mediators such as cytokines, gut hormones and gut microbiota-derived signalling molecules) transmit information from the gut to the brain, while autonomic neurons and neuroendocrine factors carry outputs from the brain to the gut. The members of the neuropeptide Y (NPY) family of biologically active peptides, NPY, peptide YY (PYY) and pancreatic polypeptide (PP), are expressed by cell systems at distinct levels of the gut–brain axis. PYY and PP are exclusively expressed by endocrine cells of the digestive system, whereas NPY is found at all levels of the gut–brain and brain–gut axis. The major systems expressing NPY comprise enteric neurons, primary afferent neurons, several neuronal pathways throughout the brain and sympathetic neurons. In the digestive tract, NPY and PYY inhibit gastrointestinal motility and electrolyte secretion and in this way modify the input to the brain. PYY is also influenced by the intestinal microbiota, and NPY exerts, via stimulation of Y1 receptors, a proinflammatory action. Furthermore, the NPY system protects against distinct behavioural disturbances caused by peripheral immune challenge, ameliorating the acute sickness response and preventing long-term depression. At the level of the afferent system, NPY inhibits nociceptive input from the periphery to the spinal cord and brainstem. In the brain, NPY and its receptors (Y1, Y2, Y4, Y5) play important roles in regulating food intake, energy homeostasis, anxiety, mood and stress resilience. In addition, PP and PYY signal to the brain to attenuate food intake, anxiety and depression-related behaviour. These findings underscore the important role of the NPY-Y receptor system at several levels of the gut–brain axis in which NPY, PYY and PP operate both as neural and endocrine messengers.
PMCID: PMC3516703  PMID: 22979996
Anxiety; Cytokines; Depression; Food intake; Gut–brain axis; Gut hormones; Immune system; Inflammation; Neuropeptide Y; Pain; Peptide YY; Pancreatic polypeptide; Satiety; Stress resilience; Visceral hyperalgesia
8.  Opioid receptors in the gastrointestinal tract 
Regulatory peptides  2009;155(1-3):11-17.
Opium is arguably one of the oldest herbal medicines, being used as analgesic, sedative and antidiarrheal drug for thousands of years. These effects mirror the actions of the endogenous opioid system and are mediated by the principal μ-, κ- and δ-opioid receptors. In the gut, met-enkephalin, leu-enkephalin, β-endorphin and dynorphin occur in both neurons and endocrine cells. When released, opioid peptides activate opioid receptors on the enteric circuitry controlling motility and secretion. As a result, inhibition of gastric emptying, increase in sphincter tone, induction of stationary motor patterns and blockade of peristalsis ensue. Together with inhibition of ion and fluid secretion, these effects cause constipation, one of the most frequent and troublesome adverse reactions of opioid analgesic therapy. Although laxatives are most frequently used to ameliorate opioid-induced bowel dysfunction, their efficacy is unsatisfactory. Specific antagonism of peripheral opioid receptors is a more rational approach. This goal is addressed by the use of opioid receptor antagonists with limited absorption such as oral prolonged-release naloxone and opioid receptor antagonists that do not penetrate the blood-brain barrier such as methylnaltrexone and alvimopan. Preliminary evidence indicates that peripherally restricted opioid receptor antagonists may act as prokinetic drugs in their own right.
PMCID: PMC3163293  PMID: 19345246
Alvimopan; Methylnaltrexone; Naloxone; Opioid peptides; Enteric nervous system; Opioid-induced bowel dysfunction; Constipation; Peripherally restricted opioid receptor antagonists; Prokinetic effects
9.  Acid sensing by visceral afferent neurons 
Acidosis in the gastrointestinal tract can be both a physiological and pathological condition. While gastric acid serves digestion and protection from pathogens, pathological acidosis is associated with defective acid containment, inflammation and ischaemia. The pH in the oesophagus, stomach and intestine is surveyed by an elaborate network of acid-sensing mechanisms to maintain homeostasis. Deviations from physiological values of extracellular pH (7.4) are monitored by multiple acid sensors expressed by epithelial cells and sensory neurons. Protons evoke multiple currents in primary afferent neurons, which are carried by several acid-sensitive ion channels. Among these, acid-sensing ion channels (ASICs) and transient receptor potential (TRP) vanilloid-1 (TRPV1) ion channels have been most thoroughly studied. ASICs survey moderate decreases in extracellular pH whereas TRPV1 is activated only by severe acidosis resulting in pH values below 6. Other molecular acid sensors comprise TRPV4, TRPC4, TRPC5, TRPP2 (PKD2L1), epithelial Na+ channels, two-pore domain K+ (K2P) channels, ionotropic purinoceptors (P2X), inward rectifier K+ channels, voltage-activated K+ channels, L-type Ca2+ channels and acid-sensitive G protein-coupled receptors. Most of these acid sensors are expressed by primary sensory neurons, although to different degrees and in various combinations. Since upregulation and overactivity of acid sensors appear to contribute to various forms of chronic inflammation and pain, acid-sensitive ion channels and receptors are also considered as targets for novel therapeutics.
PMCID: PMC3160469  PMID: 20456281
Acid surveillance; tissue protection; primary afferent neurons; acid-induced pain; acidosis; ischaemia; inflammation; acid-related gastrointestinal diseases; gastrointestinal tract; proton-gated currents; molecular acid sensors; acid-sensing ion channels; ASIC3; TRP ion channels; TRPV1; ionotropic purinoceptors
10.  TRP channels in the digestive system 
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca2+ and Mg2+, respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
PMCID: PMC3160477  PMID: 20932260
Chemosensation; mechanosensation; inflammation; intestinal motility; mechanosensation; pain; taste; TRPA1; TRPV1; TRPV4
11.  Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system 
Pharmacology & Therapeutics  2011;131(1):142-170.
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
PMCID: PMC3107431  PMID: 21420431
Chemesthesis; Chemosensation; Gastrointestinal cancer; Gastrointestinal motility; Hypersensitivity; Hyperalgesia; Inflammation; Inflammatory bowel disease; Mechanosensation; Pain; Taste; Transducers; TRPA1; TRPC4; TRPC6; TRPM5; TRPM6; TRPV1; TRPV4; TRPV6; AITC, allyl isothiocyanate; CCK, cholecystokinin; CGRP, calcitonin gene-related peptide; DRG, dorsal root ganglion; DSS, dextran sulfate sodium; GI, gastrointestinal; GPCR, G protein-coupled receptor; 5-HT, 5-hydroxytryptamine; ICC, interstitial cell of Cajal; mRNA, messenger ribonucleic acid; PAR, protease-activated receptor; PKD, polycystic kidney disease; RNA, ribonucleic acid; siRNA, small interfering ribonucleic acid; TNBS, trinitrobenzene sulfonic acid; TRP, transient receptor potential; TRPA, transient receptor potential ankyrin; TRPC, transient receptor potential canonical (or classical); TRPM, transient receptor potential melastatin; TRPP, transient receptor potential polycystin; TRPV, transient receptor potential vanilloid
12.  Prolonged Depression-Like Behavior Caused by Immune Challenge: Influence of Mouse Strain and Social Environment 
PLoS ONE  2011;6(6):e20719.
Immune challenge by bacterial lipopolysaccharide (LPS) causes short-term behavioral changes indicative of depression. The present study sought to explore whether LPS is able to induce long-term changes in depression-related behavior and whether such an effect depends on mouse strain and social context. LPS (0.83 mg/kg) or vehicle was administered intraperitoneally to female CD1 and C57BL/6 mice that were housed singly or in groups of 4. Depression-like behavior was assessed with the forced swim test (FST) 1 and 28 days post-treatment. Group-housed CD1 mice exhibited depression-like behavior 1 day post-LPS, an effect that leveled off during the subsequent 28 days, while the behavior of singly housed CD1 mice was little affected. In contrast, singly housed C57BL/6 mice responded to LPS with an increase in depression-like behavior that was maintained for 4 weeks post-treatment and confirmed by the sucrose preference test. Group-housed C57BL/6 mice likewise displayed an increased depression-like behavior 4 weeks post-treatment. The behavioral changes induced by LPS in C57BL/6 mice were associated with a particularly pronounced rise of interleukin-6 in blood plasma within 1 day post-treatment and with changes in the dynamics of the corticosterone response to the FST. The current data demonstrate that immune challenge with LPS is able to induce prolonged depression-like behavior, an effect that depends on genetic background (strain). The discovery of an experimental model of long-term depression-like behavior after acute immune challenge is of relevance to the analysis of the epigenetic and pathophysiologic mechanisms of immune system-related affective disorders.
PMCID: PMC3108969  PMID: 21673960
14.  Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine 
BMC Gastroenterology  2009;9:40.
Lafutidine is a histamine H2 receptor antagonist, the gastroprotective effect of which is related to its antisecretory activity and its ability to activate a sensory neuron-dependent mechanism of defence. The present study investigated whether intragastric administration of lafutidine (10 and 30 mg/kg) modifies vagal afferent signalling, mucosal injury, intragastric acidity and gastric emptying after gastric acid challenge.
Adult rats were treated with vehicle, lafutidine (10 – 30 mg/kg) or cimetidine (10 mg/kg), and 30 min later their stomachs were exposed to exogenous HCl (0.25 M). During the period of 2 h post-HCl, intragastric pH, gastric volume, gastric acidity and extent of macroscopic gastric mucosal injury were determined and the activation of neurons in the brainstem was visualized by c-Fos immunocytochemistry.
Gastric acid challenge enhanced the expression of c-Fos in the nucleus tractus solitarii but caused only minimal damage to the gastric mucosa. Lafutidine reduced the HCl-evoked expression of c-Fos in the NTS and elevated the intragastric pH following intragastric administration of excess HCl. Further analysis showed that the gastroprotective effect of lafutidine against excess acid was delayed and went in parallel with facilitation of gastric emptying, measured indirectly via gastric volume changes, and a reduction of gastric acidity. The H2 receptor antagonist cimetidine had similar but weaker effects.
These observations indicate that lafutidine inhibits the vagal afferent signalling of a gastric acid insult, which may reflect an inhibitory action on acid-induced gastric pain. The ability of lafutidine to decrease intragastric acidity following exposure to excess HCl cannot be explained by its antisecretory activity but appears to reflect dilution and/or emptying of the acid load into the duodenum. This profile of actions emphasizes the notion that H2 receptor antagonists can protect the gastric mucosa from acid injury independently of their ability to suppress gastric acid secretion.
PMCID: PMC2698872  PMID: 19490646
16.  The enantiomers of tramadol and its major metabolite inhibit peristalsis in the guinea pig small intestine via differential mechanisms 
BMC Pharmacology  2007;7:5.
Inhibition of intestinal peristalsis is a major side effect of opioid analgesics. Although tramadol is an opioid-like analgesic, its effect on gut motility is little known. Therefore, the effect of (+)-tramadol, (-)-tramadol and the major metabolite O-desmethyltramadol on intestinal peristalsis in vitro and their mechanisms of action were examined. Distension-induced peristalsis was recorded in fluid-perfused segments of the guinea pig small intestine. The intraluminal peristaltic pressure threshold (PPT) was used to quantify the motor effects of extraserosally administered drugs.
Racemic tramadol, its (+)- and (-)-enantiomers and the major metabolite O-desmethyltramadol (0.1 – 100 μM) concentration-dependently increased PPT until peristalsis was transiently or persistently abolished. The rank order of potency was (-)-tramadol < (+)-tramadol
The results show that the metabolite O-desmethyltramadol is more potent in inhibiting peristalsis than its parent compound. The action of all tramadol forms depends on opioid receptors, and that of (+)- and (-)-tramadol also involves adrenoceptors.
PMCID: PMC1839083  PMID: 17367519
BMC Neuroscience  2005;6:60.
Hydrochloric acid (HCl) is a potential threat to the integrity of the gastric mucosa and is known to contribute to upper abdominal pain. We have previously found that gastric mucosal challenge with excess HCl is signalled to the rat brainstem, but not spinal cord, as visualized by expression of c-fos messenger ribonucleic acid (mRNA), a surrogate marker of neuronal excitation. This study examined whether gastric mucosal exposure to capsaicin, a stimulant of nociceptive afferents that does not damage the gastric mucosa, is signalled to both brainstem and spinal cord and whether differences in the afferent signalling of gastric HCl and capsaicin challenge are related to different effects on gastric emptying.
Rats were treated intragastrically with vehicle, HCl or capsaicin, activation of neurons in the brainstem and spinal cord was visualized by in situ hybridization autoradiography for c-fos mRNA, and gastric emptying deduced from the retention of intragastrically administered fluid. Relative to vehicle, HCl (0.5 M) and capsaicin (3.2 mM) increased c-fos transcription in the nucleus tractus solitarii by factors of 7.0 and 2.1, respectively. Capsaicin also caused a 5.2-fold rise of c-fos mRNA expression in lamina I of the caudal thoracic spinal cord, although the number of c-fos mRNA-positive cells in this lamina was very small. Thus, on average only 0.13 and 0.68 c-fos mRNA-positive cells were counted in 0.01 mm sections of the unilateral lamina I following intragastric administration of vehicle and capsaicin, respectively. In contrast, intragastric HCl failed to induce c-fos mRNA in the spinal cord. Measurement of gastric fluid retention revealed that HCl suppressed gastric emptying while capsaicin did not.
The findings of this study show that gastric mucosal exposure to HCl and capsaicin is differentially transmitted to the brainstem and spinal cord. Since only HCl blocks gastric emptying, it is hypothesized that the two stimuli are transduced by different afferent pathways. We infer that HCl is exclusively signalled by gastric vagal afferents whereas capsaicin is processed both by gastric vagal and intestinal spinal afferents.
PMCID: PMC1239919  PMID: 16162281

Results 1-17 (17)