Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  Sex differences in response to maximal exercise stress test in trained adolescents 
BMC Pediatrics  2012;12:127.
Sex comparisons between girls and boys in response to exercise in trained adolescents are missing and we investigated similarities and differences as a basis for clinical interpretation and guidance.
A total of 24 adolescent females and 27 adolescent males aged 13–19 years underwent a maximal bicycle exercise stress test with measurement of cardiovascular variables, cardiac output, lung volumes, metabolic factors/lactate concentrations and breath-by-breath monitoring of ventilation, and determination of peak VO2.
Maximum heart rate was similar in females (191 ± 9 bpm) and males (194 ± 7 bpm), cardiac index at maximum exercise was lower in females (7.0 ± 1.0 l/min/m2) than in males (8.3 ± 1.4 l/min/m2, P < 0.05). Metabolic responses and RQ at maximum exercise were similar (females: 1.04 ± 0.06 vs. males: 1.05 ± 0.05). Peak VO2 was lower in females (2.37 ± 0.34 l/min) than in males (3.38 ± 0.49 l/min, P < 0.05). When peak VO2 was normalized to leg muscle mass sex differences disappeared (females: 161 ± 21 ml/min/kg vs. males: 170 ± 23 ml/min/kg). The increase in cardiac index during exercise is the key factor responsible for the greater peak VO2 in adolescent boys compared to girls.
Differences in peak VO2 in adolescent boys and girls disappear when peak VO2 is normalized to estimated leg muscle mass and therefore provide a tool to conduct individual and intersex comparisons of fitness when evaluating adolescent athletes in aerobic sports.
PMCID: PMC3472286  PMID: 22906070
Adolescent; Sex; Body composition; Exercise stress test; ECG; Blood pressure; Peak VO2; Ventilation; Lactate
2.  Estimation of cardiac output in patients with congestive heart failure by analysis of right ventricular pressure waveforms 
Cardiac output (CO) is an important determinant of the hemodynamic state in patients with congestive heart failure (CHF). We tested the hypothesis that CO can be estimated from the right ventricular (RV) pressure waveform in CHF patients using a pulse contour cardiac output algorithm that considers constant but patient specific RV outflow tract characteristic impedance.
In 12 patients with CHF, breath-by-breath Fick CO and RV pressure waveforms were recorded utilizing an implantable hemodynamic monitor during a bicycle exercise protocol. These data were analyzed retrospectively to assess changes in characteristic impedance of the RV outflow tract during exercise. Four patients that were implanted with an implantable cardiac defibrillator (ICD) implementing the algorithm were studied prospectively. During a two staged sub-maximal bicycle exercise test conducted at 4 and 16 weeks of implant, COs measured by direct Fick technique and estimated by the ICD were recorded and compared.
At rest the total pulmonary arterial resistance and the characteristic impedance were 675 ± 345 and 48 ± 18, respectively. During sub-maximal exercise, the total pulmonary arterial resistance decreased (Δ 91 ± 159, p < 0.05) but the characteristic impedance was unaffected (Δ 3 ± 9, NS). The algorithm derived cardiac output estimates correlated with Fick CO (7.6 ± 2.5 L/min, R2 = 0.92) with a limit of agreement of 1.7 L/min and tracked changes in Fick CO (R2 = 0.73).
The analysis of right ventricular pressure waveforms continuously recorded by an implantable hemodynamic monitor provides an estimate of CO and may prove useful in guiding treatment in patients with CHF.
PMCID: PMC3120727  PMID: 21569499
Ventricle; Pressure; Cardiac Output; Exercise; Pulmonary Artery

Results 1-2 (2)