Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

Year of Publication
2.  Early Diagnosis and Monitoring of Neurodegenerative Langerhans Cell Histiocytosis 
PLoS ONE  2015;10(7):e0131635.
Neurodegenerative Langerhans Cell Histiocytosis (ND-LCH) is a rare, unpredictable consequence that may devastate the quality of life of patients cured from LCH. We prospectively applied a multidisciplinary diagnostic work-up to early identify and follow-up patients with ND-LCH, with the ultimate goal of better determining the appropriate time for starting therapy.
We studied 27 children and young adults with either ND-LCH verified by structural magnetic resonance imaging (MRI) (group 1) or specific risk factors for (diabetes insipidus, craniofacial bone lesions), but no evidence of, neurodegenerative MRI changes (group 2). All patients underwent clinical, neurophysiological and MRI studies.
Seventeen patients had MRI alterations typical for ND-LCH. Nine showed neurological impairment but only three were symptomatic; 11 had abnormal somatosensory evoked potentials (SEPs), and five had abnormal brainstem auditory evoked potentials (BAEPs). MR spectroscopy (MRS) showed reduced cerebellar NAA/Cr ratio in nine patients. SEPs showed sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for predicting ND-LCH of 70.6% (95%CI, 44.0%-89.7%), 100% (69.2%-100%), 100% (73.5%-100%), and 66.7% (38.4%-88.2%), respectively. Repeated investigations in group 1 revealed increasingly abnormal EP parameters, or neurological examination, or both, in nine of fifteen patients while MRI remained unchanged in all but one patient.
A targeted MRI study should be performed in all patients with risk factors for ND-LCH for early identification of demyelination. The combined use of SEPs and careful neurological evaluation may represent a valuable, low-cost, well-tolerated and easily available methodology to monitor patients from pre-symptomatic to symptomatic stages. We suggest a multidisciplinary protocol including clinical, MRS, and neurophysiological investigations to identify a population target for future therapeutic trials.
PMCID: PMC4503531  PMID: 26176859
3.  Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI) 
BMC Pediatrics  2012;12:144.
Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment.
Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests.
This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns.
Trial registration
Current Controlled Trials ISRCTN62175998; Identifier NCT01241019; EudraCT Number 2010-018627-25
PMCID: PMC3478965  PMID: 22950861
Neonatal hypoxic-ischemic encephalopathy; Therapeutic hypothermia; Topiramate
5.  Carotid body tumors: radioguided surgical approach 
Carotid body tumours (CBTs) are very rare lesions which should be treated as soon as possible even when benign since small tumour size permits easier removal and lower incidence of perioperative complications and recurrence. Malignant forms are rare and they can be identified by lymph node invasion and metastases in distant locations. The need of reliable and effective diagnostic modalities for both primary CBTs and its metastases or recurrence is evident.
The present study reviews our experience and attempt to define the role of colour coded ultrasound (CCU) and Somatostatin receptor scintigraphy (SRS) with Indium-111-DTPA-pentetretide (Octreoscan®) using both planar and single photon emission tomography (SPECT) technique in the diagnosis and follow-up of these uncommon lesions within a multidisciplinary approach.
From 1997 to 2008, 12 patients suffering from 16 CBTs (4 bilateral) were investigated by CCU and SRS-SPECT before and after surgery. All tumours were grouped according to Shamblin's classification in order to assess the technical difficulties and morbidity of surgical resection on the ground of their size and relationship with the carotid arteries. Intraoperative radiocaptation by Octreoscan®) was also carried out in all cases to evaluate the radicality of surgery. All perioperative scans were evaluated by the same nuclear medicine physician.
Preoperatively CCU showed CBTs (four were not palpable) with a sensitivity of 100%. Radioisotope imaging identified the CBTs as chemodectomas in 15 cases while no radioisotopic uptake was detected in 1 vagus nerve neurinoma. No evidence of metastasis or multicentricity were seen by total body radioisotopic scans. Combined data from CCU and SRS-SPECT allowed to determine tumour size in order to select 7 larger tumours which were submitted to selective preoperative embolization.
Intraoperatively Octreoscan demonstrated microscopic tumour leftovers promptly removed in 1 case and an unresectable remnant at the base of the skull in another case.
During follow-up CCI and radioisotope scans showed no recurrence in 14 cases and a slightly enlargement of the intracranial residual as detected during surgery in 1 patient.
CCU may allow an early and noninvasive detection of CBTs and hence safer operations. The combined use of CCU and SRS-SPECT provide useful data to identify those tumours and to evaluate their extent and carotid arteries infiltration. Radioisotope imaging is a sensitive modality to detect metastases and lymph node involvement that are markers of CBT malignancy. After surgery CCU and SRS-SPECT can be accurate modalities for surveillance for an early detection of CBTs recurrence.
PMCID: PMC2797792  PMID: 20003252

Results 1-5 (5)