PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-18 (18)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  Paeoniae alba Radix Promotes Peripheral Nerve Regeneration 
The present study provides in vitro and in vivo evaluation of Paeoniae alba Radix (PR) on peripheral nerve regeneration. In the in vitro study, we found the PR caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as their expression of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with the PR water extract were used to bridge a 10-mm sciatic nerve defect in rats. At the conclusion of 8 weeks, regenerated nerves in the PR groups, especially at 1.25 mg ml−1 had a higher rate of successful regeneration across the wide gap, relatively larger mean values of total nerve area, myelinated axon count and blood vessel number, and a significantly larger nerve conductive velocity compared to the control group (P  <  .05). These results suggest that the PR extract can be a potential nerve growth-promoting factor, being salutary in aiding the growth of injured peripheral nerve.
doi:10.1093/ecam/nep115
PMCID: PMC3094696  PMID: 19687191
3.  Earthworm (Pheretima aspergillum) extract stimulates osteoblast activity and inhibits osteoclast differentiation 
Background
The potential benefits of earthworm (Pheretima aspergillum) for healing have received considerable attention recently. Osteoblast and osteoclast activities are very important in bone remodeling, which is crucial to repair bone injuries. This study investigated the effects of earthworm extract on bone cell activities.
Methods
Osteoblast-like MG-63 cells and RAW 264.7 macrophage cells were used for identifying the cellular effects of different concentrations of earthworm extract on osteoblasts and osteoclasts, respectively. The optimal concentration of earthworm extract was determined by mitochondrial colorimetric assay, alkaline phosphatase activity, matrix calcium deposition, Western blotting and tartrate-resistant acid phosphatase activity.
Results
Earthworm extract had a dose-dependent effect on bone cell activities. The most effective concentration of earthworm extract was 3 mg/ml, significantly increasing osteoblast proliferation and differentiation, matrix calcium deposition and the expression levels of alkaline phosphatase, osteopontin and osteocalcin. Conversely, 3 mg/ml earthworm extract significantly reduced the tartrate-resistant acid phosphatase activity of osteoclasts without altering cell viability.
Conclusions
Earthworm extract has beneficial effects on bone cell cultures, indicating that earthworm extract is a potential agent for use in bone regeneration.
doi:10.1186/1472-6882-14-440
PMCID: PMC4233063  PMID: 25387689
Earthworm; Osteoblasts; Osteoclasts
4.  Evaluating the Bone Tissue Regeneration Capability of the Chinese Herbal Decoction Danggui Buxue Tang from a Molecular Biology Perspective 
BioMed Research International  2014;2014:853234.
Large bone defects are a considerable challenge to reconstructive surgeons. Numerous traditional Chinese herbal medicines have been used to repair and regenerate bone tissue. This study investigated the bone regeneration potential of Danggui Buxue Tang (DBT), a Chinese herbal decoction prepared from Radix Astragali (RA) and Radix Angelicae Sinensis (RAS), from a molecular biology perspective. The optimal ratio of RA and RAS used in DBT for osteoblast culture was obtained by colorimetric and alkaline phosphatase (ALP) activity assays. Moreover, the optimal concentration of DBT for bone cell culture was also determined by colorimetric, ALP activity, nodule formation, Western blotting, wound-healing, and tartrate-resistant acid phosphatase activity assays. Consequently, the most appropriate weight ratio of RA to RAS for the proliferation and differentiation of osteoblasts was 5 : 1. Moreover, the most effective concentration of DBT was 1,000 μg/mL, which significantly increased the number of osteoblasts, intracellular ALP levels, and nodule numbers, while inhibiting osteoclast activity. Additionally, 1,000 μg/mL of DBT was able to stimulate p-ERK and p-JNK signal pathway. Therefore, DBT is highly promising for use in accelerating fracture healing in the middle or late healing periods.
doi:10.1155/2014/853234
PMCID: PMC4176646  PMID: 25295277
5.  Coptidis rhizome and Si Jun Zi Tang Can Prevent Salmonella enterica Serovar Typhimurium Infection in Mice 
PLoS ONE  2014;9(8):e105362.
Salmonella, a common zoonotic pathogen, causes gastroenteritis in both humans and animals. Traditional Chinese Medicine (TCM) has been used to improve gastrointestinal dysfunction and to modify the immune response to inflammation for centuries. This study used six herbal plants and four TCM formulae to rate their efficacy in preventing S. Typhimurium infection via mouse model. Minimum bactericidal concentration (MBC) of Coptidis rhizome (CR) against the reference strain tallied 12.5 mg/ml and against clinical isolate ST21 was 25 mg/ml. MBCs of other herbal extracts and formulae on Salmonella Typhimurium strains were above 50 mg/ml. In the mice model, CR and Si Jun Zi Tang (SJZT) could significantly decrease the bacterial load in organs and blood after being challenged, along with body weight loss due to the infection. CR and SJZT alleviated infection-induced interferon-gamma levels in the serum and tissues, and tumor necrosis factor-alpha (TNF-α) levels in intestinal tissues. CR and SJZT serum metabolites could suppress S. Typhimurium invasion and TNF-α expression in RAW264.7 cells. The therapeutic activity of CR and SJZT may involve berberine, ginsenoside Rb1, and glycyrrhizin, interfering with Salmonella when invading macrophages. CR and SJZT has shown potential in preventing S. Typhimurium infection through the regulation of the immune response.
doi:10.1371/journal.pone.0105362
PMCID: PMC4136861  PMID: 25133542
6.  High-Frequency Electrical Stimulation Can Be a Complementary Therapy to Promote Nerve Regeneration in Diabetic Rats 
PLoS ONE  2013;8(11):e79078.
The purpose of this study was to evaluate whether 1 mA of percutaneous electrical stimulation (ES) at 0, 2, 20, or 200 Hz augments regeneration between the proximal and distal nerve stumps in streptozotocin diabetic rats. A10-mm gap was made in the diabetic rat sciatic nerve by suturing the stumps into silicone rubber tubes. Normal animals were used as the controls. Starting 1 week after transection, ES was applied between the cathode placed at the distal stump and the anode at the proximal stump every other day for 3 weeks. At 4 weeks after surgery, the normal controls and the groups receiving ES at 20, and 200 Hz had a higher success percentage of regeneration compared to the ES groups at 0 and 2 Hz. In addition, quantitative histology of the successfully regenerated nerves revealed that the groups receiving ES at a higher frequency, especially at 200 Hz, had a more mature structure with more myelinated fibers compared to those in the lower-frequency ES groups. Similarly, electrophysiology in the ES group at 200 Hz showed significantly shorter latency, larger amplitude, larger area of evoked muscle action potentials and faster conduction velocity compared to other groups. Immunohistochemical staining showed that ES at a higher frequency could significantly promote calcitonin gene-related peptide expression in lamina I-II regions in the dorsal horn and recruit a higher number of macrophages in the diabetic distal sciatic nerve. The macrophages were found that they could stimulate the secretion of nerve growth factor, platelet-derived growth factor, and transforming growth factor-β in dissected sciatic nerve segments. The ES at a higher frequency could also increase cutaneous blood flow in the ipsilateral hindpaw to the injury. These results indicated that a high-frequency ES could be necessary to heal severed diabetic peripheral nerve with a long gap to be repaired.
doi:10.1371/journal.pone.0079078
PMCID: PMC3827114  PMID: 24265744
7.  Cortex Moutan Induces Bladder Cancer Cell Death via Apoptosis and Retards Tumor Growth in Mouse Bladders 
Cortex Moutan is the root bark of Paeonia suffruticosa Andr. It is the herbal medicine widely used in Traditional Chinese Medicine for the treatment of blood-heat and blood-stasis syndrome. Furthermore, it has been reported that Cortex Moutan has anticancer effect. In this study, the Cortex Moutan extract was evaluated in bladder cancer therapy in vitro and in vivo. Cortex Moutan extract reduces cell viability with IC50 between 1~2 mg/ml in bladder cancer cells, and it has lower cytotoxicity in normal urotheliums. It arrests cells in G1 and S phase and causes phosphatidylserine expression in the outside of cell membrane. It induces caspase-8 and caspase-3 activation and poly(ADP-ribose) polymerase degradation. The pan caspase inhibitor z-VAD-fmk reverses Cortex Moutan-induced cell death. Cortex Moutan also inhibits cell invasion activity in 5637 cells. In mouse orthotopic bladder cancer model, intravesical application of Cortex Moutan decreases the bladder tumor size without altering the blood biochemical parameters. In summary, these results demonstrate the antiproliferation and anti-invasion properties of Cortex Moutan in bladder cancer cells and its antibladder tumor effect in vivo. Cortex Moutan may provide an alternative therapeutic strategy for the intravesical therapy of superficial bladder cancer.
doi:10.1155/2013/207279
PMCID: PMC3824643  PMID: 24282433
8.  Reconstructive Effects of Percutaneous Electrical Stimulation Combined with GGT Composite on Large Bone Defect in Rats 
Previous studies have shown the electromagnetic stimulation improves bone remodeling and bone healing. However, the effect of percutaneous electrical stimulation (ES) was not directly explored. The purpose of this study was to evaluate effect of ES on improvement of bone repair. Twenty-four adult male Sprague-Dawley rats were used for cranial implantation. We used a composite comprising genipin cross-linked gelatin mixed with tricalcium phosphate (GGT). Bone defects of all rats were filled with the GGT composites, and the rats were assigned into six groups after operation. The first three groups underwent 4, 8, and 12 weeks of ES, and the anode was connected to the backward of the defect on the neck; the cathode was connected to the front of the defect on the head. Rats were under inhalation anesthesia during the stimulation. The other three groups only received inhalation anesthesia without ES, as control groups. All the rats were examined afterward at 4, 8, and 12 weeks. Radiographic examinations including X-ray and micro-CT showed the progressive bone regeneration in the both ES and non-ES groups. The amount of the newly formed bone increased with the time between implantation and examination in the ES and non-ES groups and was higher in the ES groups. Besides, the new bone growth trended on bilateral sides in ES groups and accumulated in U-shape in non-ES groups. The results indicated that ES could improve bone repair, and the effect is higher around the cathode.
doi:10.1155/2013/607201
PMCID: PMC3681217  PMID: 23818928
9.  Ferulic Acid Enhances Peripheral Nerve Regeneration across Long Gaps 
This study investigated the effect of ferulic acid (FA) on peripheral nerve injury. In the in vitro test, the effect of FA on viability of Schwann cells was studied. In the in vivo test, right sciatic nerves of the rats were transected, and a 15 mm nerve defect was created. A nerve conduit made of silicone rubber tube filled with FA (5 and 25 μg/mL), or saline (control), was implanted into the nerve defect. Results show that the number of proliferating Schwann cells increased significantly in the FA-treated group at 25 μg/mL compared to that in the control group. After 8 weeks, the FA-treated group at 25 μg/mL had a higher rate of successful regeneration across the wide gap, a significantly calcitonin gene-related peptide (CGRP) staining of the lamina I-II regions in the dorsal horn ipsilateral to the injury, a significantly diminished number of macrophages recruited, and a significantly shortening of the latency and an acceleration of the nerve conductive velocity (NCV) of the evoked muscle action potentials (MAPs) compared with the controls. In summary, the FA may be useful in the development of future strategies for the treatment of peripheral nerve injury.
doi:10.1155/2013/876327
PMCID: PMC3652149  PMID: 23690861
10.  Application of Scutellariae radix, Gardeniae fructus, and Probiotics to Prevent Salmonella enterica Serovar Choleraesuis Infection in Swine 
Salmonella enterica serovar Choleraesuis, a host-adapted pathogen of swine, usually causes septicemia. Lactic acid bacteria (LAB) strains have been widely studied in recent years for their probiotic properties. In this study, a mouse infection model first screened for potential agents against infection, then a pig infection model evaluated effects of LAB strains and herbal plants against infection. Scutellariae radix (SR) and Gardeniae fructus (GF) showed abilities to reduce bacteria shedding and suppressing serum level of TNF-α induced by infection in swine. Bioactivities of SR and GF were enhanced by combining with LAB strains, which alone could speed up the bacteria elimination time in feces and boost immunity of infected pigs. Baicalein and genipin exhibited stronger cytotoxicity than baicalin and geniposide did, as well as prevent Salmonella from invading macrophages. Our study suggests LAB strains as exhibiting multiple functions: preventing infection, enhancing immunity to prepare host defenses against further infection, and adjusting intestinal microbes' enzymatic activity in order to convert herbal compounds to active compounds. The SR/GF-LAB strain mixture holds potential infection-prevention agents supplied as feed additives.
doi:10.1155/2013/568528
PMCID: PMC3600312  PMID: 23533497
11.  A Novel Porous Gelatin Composite Containing Naringin for Bone Repair 
As Gu-Sui-Bu (GSB) is a commonly used Chinese medical herb for therapeutic treatment of bone-related diseases, naringin is its main active component. This study elucidates how various concentrations of naringin solution affect the activities of bone cells, based on colorimetric, alkaline phosphatase activity, nodule formation, and tartrate-resistant acid phosphatase activity assays to determine the optimal concentration of naringin. GGT composite was obtained by combining genipin cross-linked gelatin and β-tricalcium phosphate. GGTN composite was prepared by mixing GGT composite with the predetermined concentration of naringin. Porous GGT and GGTN composites were then made using a salt-leaching procedure. The potential of the composites in repairing bone defects was evaluated and compared in vivo by using the biological response of rabbit calvarial bone to these composites. Consequently, the most effective concentration of naringin was 10 mg/mL, which significantly enhanced the proliferation of osteoblasts, osteoclast activity, and nodule formation without affecting the alkaline phosphatase activity of osteoblasts and mitochondrial activity of mixed-bone cells. Radiographic analysis revealed greater new bone ingrowth in the GGTN composite than in the GGT composite at the same implantation time. Therefore, the GGTN composite is highly promising for use as a bone graft material.
doi:10.1155/2013/283941
PMCID: PMC3575669  PMID: 23431335
12.  Novel use of biodegradable casein conduits for guided peripheral nerve regeneration 
Recent advances in nerve repair technology have focused on finding more biocompatible, non-toxic materials to imitate natural peripheral nerve components. In this study, casein protein cross-linked with naturally occurring genipin (genipin-cross-linked casein (GCC)) was used for the first time to make a biodegradable conduit for peripheral nerve repair. The GCC conduit was dark blue in appearance with a concentric and round lumen. Water uptake, contact angle and mechanical tests indicated that the conduit had a high stability in water and did not collapse and cramped with a sufficiently high level of mechanical properties. Cytotoxic testing and terminal deoxynucleotidyl transferase dUTP nick-end labelling assay showed that the GCC was non-toxic and non-apoptotic, which could maintain the survival and outgrowth of Schwann cells. Non-invasive real-time nuclear factor-κB bioluminescence imaging accompanied by histochemical assessment showed that the GCC was highly biocompatible after subcutaneous implantation in transgenic mice. Effectiveness of the GCC conduit as a guidance channel was examined as it was used to repair a 10 mm gap in the rat sciatic nerve. Electrophysiology, labelling of calcitonin gene-related peptide in the lumbar spinal cord, and histology analysis all showed a rapid morphological and functional recovery for the disrupted nerves. Therefore, we conclude that the GCC can offer great nerve regeneration characteristics and can be a promising material for the successful repair of peripheral nerve defects.
doi:10.1098/rsif.2011.0009
PMCID: PMC3177610  PMID: 21525148
casein; nerve conduit; nerve regeneration; nerve injury
13.  Respiratory viral infections in children with asthma: do they matter and can we prevent them? 
BMC Pediatrics  2012;12:147.
Background
Asthma is a major public health problem with a huge social and economic burden affecting 300 million people worldwide. Viral respiratory infections are the major cause of acute asthma exacerbations and may contribute to asthma inception in high risk young children with susceptible genetic background. Acute exacerbations are associated with decreased lung growth or accelerated loss of lung function and, as such, add substantially to both the cost and morbidity associated with asthma.
Discussion
While the importance of preventing viral infection is well established, preventive strategies have not been well explored. Good personal hygiene, hand-washing and avoidance of cigarette smoke are likely to reduce respiratory viral infections. Eating a healthy balanced diet, active probiotic supplements and bacterial-derived products, such as OM-85, may reduce recurrent infections in susceptible children. There are no practical anti-viral therapies currently available that are suitable for widespread use.
Summary
Hand hygiene is the best measure to prevent the common cold. A healthy balanced diet, active probiotic supplements and immunostimulant OM-85 may reduce recurrent infections in asthmatic children.
doi:10.1186/1471-2431-12-147
PMCID: PMC3471019  PMID: 22974166
Acute respiratory infections; Childhood asthma; Common cold; Acute exacerbations; Rhinovirus
14.  Dilong: Role in Peripheral Nerve Regeneration 
Dilong, also known as earthworm, has been widely used in traditional Chinese medicine (TCM) for thousands of years. Schwann cell migration and proliferation are critical for the regeneration of injured nerves and Schwann cells provide an essentially supportive role for neuron regeneration. However, the molecular mechanisms of migration and proliferation induced by dilongs in Schwann cells remain unclear. Here, we discuss the molecular mechanisms that includes (i) migration signaling, MAPKs (mitogen-activated protein kinases), mediated PAs and MMP2/9 pathway; (ii) survival and proliferative signaling, IGF-I (insulin-like growth factor-I)-mediated PI3K/Akt pathways and (iii) cell cycle regulation. Dilong stimulate RSC96 cell proliferation and migration. It can induce phosphorylation of ERK1/2 and p38, but not JNK, and activate the downstream signaling expression of PAs (plasminogen activators) and MMPs (matrix metalloproteinases) in a time-dependent manner. In addition, Dilong stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with chemical inhibitors (U0126 and SB203580), and small interfering ERK1/2 and p38 RNA, resulting in migration and uPA-related signal pathway inhibition. Dilong also induces the phosphorylation of IGF-I-mediated PI3K/Akt pathway, activates protein expression of PCNA (proliferating cell nuclear antigen) and cell cycle regulatory proteins (cyclin D1, cyclin E and cyclin A) in a time-dependent manner. In addition, it accelerates G1-phase progression with earlier S-phase entry and significant numbers of cells entered the S-phase. The siRNA-mediated knockdown of PI3K that significantly reduces PI3K protein expression levels, resulting in Bcl2 survival factor reduction, revealing a marked blockage of G1 to S transition in proliferating cells. These results reveal the unknown RSC96 cell migration and proliferation mechanism induced by dilong, which find use as a new medicine for nerve regeneration.
doi:10.1093/ecam/neq079
PMCID: PMC3136393  PMID: 21799677
15.  RSC96 Schwann Cell Proliferation and Survival Induced by Dilong through PI3K/Akt Signaling Mediated by IGF-I 
Schwann cell proliferation is critical for the regeneration of injured nerves. Dilongs are widely used in Chinese herbal medicine to remove stasis and stimulate wound-healing functions. Exactly how this Chinese herbal medicine promotes tissue survival remains unclear. The aim of the present study was to investigate the molecular mechanisms by which Dilong promote neuron regeneration. Our results show that treatment with extract of Dilong induces the phosphorylation of the insulin-like growth factor-I (IGF-I)-mediated phosphatidylinositol 3-kinase/serine-threonine kinase (PI3K/Akt) pathway, and activates protein expression of cell nuclear antigen (PCNA) in a time-dependent manner. Cell cycle analysis showed that G1 transits into the S phase in 12–16 h, and S transits into the G2 phase 20 h after exposure to earthworm extract. Strong expression of cyclin D1, cyclin E and cyclin A occurs in a time-dependent manner. Small interfering RNA (siRNA)-mediated knockdown of PI3K significantly reduced PI3K protein expression levels, resulting in Bcl2 survival factor reduction and a marked blockage of G1 to S transition in proliferating cells. These results demonstrate that Dilong promotes the proliferation and survival of RSC96 cells via IGF-I signaling. The mechanism is mainly dependent on the PI3K protein.
doi:10.1093/ecam/nep216
PMCID: PMC3135880  PMID: 20040524
16.  Schwann Cell Migration Induced by Earthworm Extract via Activation of PAs and MMP2/9 Mediated through ERK1/2 and p38 
The earthworm, which has stasis removal and wound-healing functions, is a widely used Chinese herbal medicine in China. Schwann cell migration is critical for the regeneration of injured nerves. Schwann cells provide an essentially supportive activity for neuron regeneration. However, the molecular migration mechanisms induced by earthworms in Schwann cells remain unclear. Here, we investigate the roles of MAPK (ERK1/2, JNK and p38) pathways for earthworm-induced matrix-degrading proteolytic enzyme (PAs and MMP2/9) production in Schwann cells. Moreover, earthworm induced phosphorylation of ERK1/2 and p38, but not JNK, activate the downstream signaling expression of PAs and MMPs in a time-dependent manner. Earthworm-stimulated ERK1/2 and p38 phosphorylation was attenuated by pretreatment with U0126 and SB203580, resulting in migration and uPA-related signal pathway inhibition. The results were confirmed using small interfering ERK1/2 and p38 RNA. These results demonstrated that earthworms can stimulate Schwann cell migration and up-regulate PAs and MMP2/9 expression mediated through the MAPK pathways, ERK1/2 and p38. Taken together, our data suggests the MAPKs (ERK1/2, p38)-, PAs (uPA, tPA)-, MMP (MMP2, MMP9) signaling pathway of Schwann cells regulated by earthworms might play a major role in Schwann cell migration and nerve regeneration.
doi:10.1093/ecam/nep131
PMCID: PMC3135425  PMID: 19808845
17.  Neuron Regeneration and Proliferation Effects of Danshen and Tanshinone IIA 
This study evaluates the proliferative effects of danshen and its monomer extract, tanshinone IIA, on Schwann cell proliferation. A piece of silicone rubber was guided across a 15-mm gap in the sciatic nerve of a rat. This nerve gap was then filled with different concentrations of danshen (0–100 mg/mL). The results showed that danshen increased the expressions of uPA, cyclin D1, E and ERK, JNK, and P38 MAP kinases via the FGF-2 signaling pathway in a dose-dependent manner. RSC96, Schwann cells were also administered with danshen (0, 20, 40, 60, 80, and 100 μg/mL) and tanshinone IIA (0, 2, 4, 6, 8, and 10 μg/mL). In lower concentrations, danshen and tanshinone IIA exhibited an apparent effect on Schwann cells. Similar effects were also demonstrated in the FGF-2-uPA regulating cascade and cell cycle proliferative protein results. Schwann cell migration was elevated as well. We used MAPK-signaling chemical inhibitors and identified the proliferative effects of danshen and tanshinone IIA as MAPK-signaling dependent. The results from the in vitro systems indicate that danshen and tanshinone IIA can be used to induce Schwann cell proliferation, and in vivo results potentially suggest that danshen and tanshinone IIA might enhance neuron regeneration.
doi:10.1155/2011/378907
PMCID: PMC2997511  PMID: 21151668
18.  Serum levels of soluble receptor for advanced glycation end products and of S100 proteins are associated with inflammatory, autoantibody, and classical risk markers of joint and vascular damage in rheumatoid arthritis 
Introduction
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin superfamily of cell surface receptor molecules. High concentrations of three of its putative proinflammatory ligands, S100A8/A9 complex (calprotectin), S100A8, and S100A12, are found in rheumatoid arthritis (RA) serum and synovial fluid. In contrast, soluble RAGE (sRAGE) may prevent proinflammatory effects by acting as a decoy. This study evaluated the serum levels of S100A9, S100A8, S100A12 and sRAGE in RA patients, to determine their relationship to inflammation and joint and vascular damage.
Methods
Serum sRAGE, S100A9, S100A8 and S100A12 levels from 138 patients with established RA and 44 healthy controls were measured by ELISA and compared by unpaired t test. In RA patients, associations with disease activity and severity variables were analyzed by simple and multiple linear regressions.
Results
Serum S100A9, S100A8 and S100A12 levels were correlated in RA patients. S100A9 levels were associated with body mass index (BMI), and with serum levels of S100A8 and S100A12. S100A8 levels were associated with serum levels of S100A9, presence of anti-citrullinated peptide antibodies (ACPA), and rheumatoid factor (RF). S100A12 levels were associated with presence of ACPA, history of diabetes, and serum S100A9 levels. sRAGE levels were negatively associated with serum levels of C-reactive protein (CRP) and high-density lipoprotein (HDL), history of vasculitis, and the presence of the RAGE 82Ser polymorphism.
Conclusions
sRAGE and S100 proteins were associated not just with RA inflammation and autoantibody production, but also with classical vascular risk factors for end-organ damage. Consistent with its role as a RAGE decoy molecule, sRAGE had the opposite effects to S100 proteins in that S100 proteins were associated with autoantibodies and vascular risk, whereas sRAGE was associated with protection against joint and vascular damage. These data suggest that RAGE activity influences co-development of joint and vascular disease in rheumatoid arthritis patients.
doi:10.1186/ar2645
PMCID: PMC2688185  PMID: 19284577

Results 1-18 (18)