PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Medium-Chain Acyl-CoA Deficiency: Outlines from Newborn Screening, In Silico Predictions, and Molecular Studies 
The Scientific World Journal  2013;2013:625824.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is a disorder of fatty acid oxidation characterized by hypoglycemic crisis under fasting or during stress conditions, leading to lethargy, seizures, brain damage, or even death. Biochemical acylcarnitines data obtained through newborn screening by liquid chromatography-tandem mass spectrometry (LC-MS/MS) were confirmed by molecular analysis of the medium-chain acyl-CoA dehydrogenase (ACADM) gene. Out of 324.000 newborns screened, we identified 14 MCADD patients, in whom, by molecular analysis, we found a new nonsense c.823G>T (p.Gly275∗) and two new missense mutations: c.253G>C (p.Gly85Arg) and c.356T>A (p.Val119Asp). Bioinformatics predictions based on both phylogenetic conservation and functional/structural software were used to characterize the new identified variants. Our findings confirm the rising incidence of MCADD whose existence is increasingly recognized due to the efficacy of an expanded newborn screening panel by LC-MS/MS making possible early specific therapies that can prevent possible crises in at-risk infants. We noticed that the “common” p.Lys329Glu mutation only accounted for 32% of the defective alleles, while, in clinically diagnosed patients, this mutation accounted for 90% of defective alleles. Unclassified variants (UVs or VUSs) are especially critical when considering screening programs. The functional and pathogenic characterization of genetic variants presented here is required to predict their medical consequences in newborns.
doi:10.1155/2013/625824
PMCID: PMC3833120  PMID: 24294134
2.  Galactosialidosis: review and analysis of CTSA gene mutations 
Background
Mutations in the CTSA gene, that encodes the protective protein/cathepsin A or PPCA, lead to the secondary deficiency of β-galactosidase (GLB1) and neuraminidase 1 (NEU1), causing the lysosomal storage disorder galactosialidosis (GS). Few clinical cases of GS have been reported in the literature, the majority of them belonging to the juvenile/adult group of patients.
Methods
The correct nomenclature of mutations for this gene is discussed through the analysis of the three PPCA/CTSA isoforms available in the GenBank database. Phenotype-genotype correlation has been assessed by computational analysis and review of previously reported single amino acid substitutions.
Results
We report the clinical and mutational analyses of four cases with the rare infantile form of GS. We identified three novel nucleotide changes, two of them resulting in the missense mutations, c.347A>G (p.His116Arg), c.775T>C (p.Cys259Arg), and the third, c.1216C>T, resulting in the p.Gln406* stop codon, a type of mutation identified for the first time in GS. An Italian founder effect of the c.114delG mutation can be suggested according to the origin of the only three patients carrying this mutation reported here and in the literature.
Conclusions
In early reports mutations nomenclature was selected according to all CTSA isoforms (three different isoforms), thus generating a lot of confusion. In order to assist physicians in the interpretation of detected mutations, we mark the correct nomenclature for CTSA mutations. The complexity of pathology caused by the multifunctions of CTSA, and the very low numbers of mutations (only 23 overall) in relation to the length of the CTSA gene are discussed.
In addition, the in silico functional predictions of all reported missense mutations allowed us to closely predict the early infantile, late infantile and juvenile phenotypes, also disclosing different degrees of severity in the juvenile phenotype.
doi:10.1186/1750-1172-8-114
PMCID: PMC3737020  PMID: 23915561
3.  New clinical and molecular insights on Barth syndrome 
Background
Barth syndrome (BS) is an X-linked infantile-onset cardioskeletal disease characterized by cardiomyopathy, hypotonia, growth delay, neutropenia and 3-methylglutaconic aciduria. It is caused by mutations in the TAZ gene encoding tafazzin, a protein involved in the metabolism of cardiolipin, a mitochondrial-specific phospholipid involved in mitochondrial energy production.
Methods
Clinical, biochemical and molecular characterization of a group of six male patients suspected of having BS. Three patients presented early with severe metabolic decompensation including respiratory distress, oxygen desaturation and cardiomyopathy and died within the first year of life. The remaining three patients had cardiomyopathy, hypotonia and growth delay and are still alive. Cardiomyopathy was detected during pregnancy through a routine check-up in one patient. All patients exhibited 3-methylglutaconic aciduria and neutropenia, when tested and five of them also had lactic acidosis.
Results
We confirmed the diagnosis of BS with sequence analysis of the TAZ gene, and found five new mutations, c.641A>G p.His214Arg, c.284dupG (p.Thr96Aspfs*37), c.678_691del14 (p.Tyr227Trpfs*79), g.8009_16445del8437 and g.[9777_9814del38; 9911-?_14402del] and the known nonsense mutation c.367C>T (p.Arg123Term). The two gross rearrangements ablated TAZ exons 6 to 11 and probably originated by non-allelic homologous recombination and by Serial Replication Slippage (SRS), respectively. The identification of the breakpoints boundaries of the gross deletions allowed the direct detection of heterozygosity in carrier females.
Conclusions
Lactic acidosis associated with 3-methylglutaconic aciduria is highly suggestive of BS, whilst the severity of the metabolic decompensation at disease onset should be considered for prognostic purposes. Mutation analysis of the TAZ gene is necessary for confirming the clinical and biochemical diagnosis in probands in order to identify heterozygous carriers and supporting prenatal diagnosis and genetic counseling.
doi:10.1186/1750-1172-8-27
PMCID: PMC3599367  PMID: 23409742
Barth syndrome; TAZ gene mutation; In utero cardiomyopathy; Metabolic decompensation; Lactic acidosis; 3-methylglutaconic aciduria; Gross deletions; Metabolic cardiomyopathy
4.  Sudden unexpected infant death (SUDI) in a newborn due to medium chain acyl CoA dehydrogenase (MCAD) deficiency with an unusual severe genotype 
Medium chain acyl CoA dehydrogenase deficiency (MCAD) is the most common inborn error of fatty acid oxidation. This condition may lead to cellular energy shortage and cause severe clinical events such as hypoketotic hypoglycemia, Reye syndrome and sudden death. MCAD deficiency usually presents around three to six months of life, following catabolic stress as intercurrent infections or prolonged fasting, whilst neonatal-onset of the disease is quite rare. We report the case of an apparently healthy newborn who suddenly died at the third day of life, in which the diagnosis of MCAD deficiency was possible through peri-mortem blood-spot acylcarnitine analysis that showed very high concentrations of octanoylcarnitine. Genetic analysis at the ACADM locus confirmed the biochemical findings by demonstrating the presence in homozygosity of the frame-shift c.244dup1 (p.Trp82LeufsX23) mutation, a severe genotype that may explain the unusual and very early fatal outcome in this newborn. This report confirms that inborn errors of fatty acid oxidation represent one of the genetic causes of sudden unexpected deaths in infancy (SUDI) and underlines the importance to include systematically specific metabolic screening in any neonatal unexpected death.
doi:10.1186/1824-7288-38-59
PMCID: PMC3502270  PMID: 23095120
Medium chain acyl CoA dehydrogenase deficiency; Sudden unexpected deaths in Infancy; Sudden infant death syndrome; Fatty acid oxidation disorders
5.  Safety and efficacy of topiramate in neonates with hypoxic ischemic encephalopathy treated with hypothermia (NeoNATI) 
BMC Pediatrics  2012;12:144.
Background
Despite progresses in neonatal care, the mortality and the incidence of neuro-motor disability after perinatal asphyxia have failed to show substantial improvements. In countries with a high level of perinatal care, the incidence of asphyxia responsible for moderate or severe encephalopathy is still 2–3 per 1000 term newborns. Recent trials have demonstrated that moderate hypothermia, started within 6 hours after birth and protracted for 72 hours, can significantly improve survival and reduce neurologic impairment in neonates with hypoxic-ischemic encephalopathy. It is not currently known whether neuroprotective drugs can further improve the beneficial effects of hypothermia. Topiramate has been proven to reduce brain injury in animal models of neonatal hypoxic ischemic encephalopathy. However, the association of mild hypothermia and topiramate treatment has never been studied in human newborns. The objective of this research project is to evaluate, through a multicenter randomized controlled trial, whether the efficacy of moderate hypothermia can be increased by concomitant topiramate treatment.
Methods/Design
Term newborns (gestational age ≥ 36 weeks and birth weight ≥ 1800 g) with precocious metabolic, clinical and electroencephalographic (EEG) signs of hypoxic-ischemic encephalopathy will be randomized, according to their EEG pattern, to receive topiramate added to standard treatment with moderate hypothermia or standard treatment alone. Topiramate will be administered at 10 mg/kg once a day for the first 3 days of life. Topiramate concentrations will be measured on serial dried blood spots. 64 participants will be recruited in the study. To evaluate the safety of topiramate administration, cardiac and respiratory parameters will be continuously monitored. Blood samplings will be performed to check renal, liver and metabolic balance. To evaluate the efficacy of topiramate, the neurologic outcome of enrolled newborns will be evaluated by serial neurologic and neuroradiologic examinations. Visual function will be evaluated by means of behavioural standardized tests.
Discussion
This pilot study will explore the possible therapeutic role of topiramate in combination with moderate hypothermia. Any favourable results of this research might open new perspectives about the reduction of cerebral damage in asphyxiated newborns.
Trial registration
Current Controlled Trials ISRCTN62175998; ClinicalTrials.gov Identifier NCT01241019; EudraCT Number 2010-018627-25
doi:10.1186/1471-2431-12-144
PMCID: PMC3478965  PMID: 22950861
Neonatal hypoxic-ischemic encephalopathy; Therapeutic hypothermia; Topiramate
6.  GM1 gangliosidosis and Morquio B disease: an update on genetic alterations and clinical findings 
Biochimica et biophysica acta  2011;1812(7):782-790.
GM1 gangliosidosis and Morquio B syndrome, both arising from beta-galactosidase (GLB1) deficiency, are very rare lysosomal storage diseases with an incidence of about 1:100,000– 1:200,000 live births worldwide. Here we report the beta-galactosidase gene (GLB1) mutation analysis of 21 unrelated GM1 gangliosidosis patients, and of 4 Morquio B patients, of whom two are brothers. Clinical features of the patients were collected and compared with those in literature. In silico analyses were performed by standard alignments tools and by an improved version of GLB1 three-dimensional models. The analysed cohort includes remarkable cases. One patient with GM1 gangliosidosis had a triple X syndrome. One patient with juvenile GM1 gangliosidosis was homozygous for a mutation previously identified in Morquio type B. A patient with infantile GM1 gangliosidosis carried a complex GLB1 allele harbouring two genetic variants leading to p.R68W and p.R109W amino acid changes, in trans with the known p.R148C mutation.
Molecular analysis showed 27 mutations, 9 of which are new: 5 missense, 3 microdeletions and a nonsense mutation. We also identified four new genetic variants with a predicted polymorphic nature that was further investigated by in silico analyses.
Three-dimensional structural analysis of GLB1 homology models including the new missense mutations and the p.R68W and p.R109W amino acid changes, showed that all the amino acids replacements affected the resulting protein structures in different ways, from changes in polarity to folding alterations. Genetic and clinical associations led us to undertake a critical review of the classifications of late-onset GM1 gangliosidosis and Morquio B disease.
doi:10.1016/j.bbadis.2011.03.018
PMCID: PMC3210552  PMID: 21497194
beta-galactosidase; GM1- gangliosidosis; Morquio B; mutation update; homology modelling

Results 1-6 (6)