PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
2.  6 Minute Walk Test in Duchenne MD Patients with Different Mutations: 12 Month Changes 
PLoS ONE  2014;9(1):e83400.
Objective
In the last few years some of the therapeutical approaches for Duchenne muscular dystrophy (DMD) are specifically targeting distinct groups of mutations, such as deletions eligible for skipping of individual exons. The aim of this observational study was to establish whether patients with distinct groups of mutations have different profiles of changes on the 6 minute walk test (6MWT) over a 12 month period.
Methods
The 6MWT was performed in 191 ambulant DMD boys at baseline and 12 months later. The results were analysed using a test for heterogeneity in order to establish possible differences among different types of mutations (deletions, duplications, point mutations) and among subgroups of deletions eligible to skip individual exons.
Results
At baseline the 6MWD ranged between 180 and 560,80 metres (mean 378,06, SD 74,13). The 12 month changes ranged between −325 and 175 (mean −10.8 meters, SD 69.2). Although boys with duplications had better results than those with the other types of mutations, the difference was not significant.
Similarly, boys eligible for skipping of the exon 44 had better baseline results and less drastic changes than those eligible for skipping exon 45 or 53, but the difference was not significant.
Conclusions
even if there are some differences among subgroups, the mean 12 month changes in each subgroup were all within a narrow Range: from the mean of the whole DMD cohort. This information will be of help at the time of designing clinical trials with small numbers of eligible patients.
doi:10.1371/journal.pone.0083400
PMCID: PMC3885414  PMID: 24421885
4.  Importance of SPP1 genotype as a covariate in clinical trials in Duchenne muscular dystrophy 
Neurology  2012;79(2):159-162.
Objective:
To test the effect of the single nucleotide polymorphism −66 T>G (rs28357094) in the osteopontin gene (SPP1) on functional measures over 12 months in Duchenne muscular dystrophy (DMD).
Methods:
This study was conducted on a cohort of ambulatory patients with DMD from a network of Italian neuromuscular centers, evaluated longitudinally with the North Star Ambulatory Assessment (NSAA) and the 6-Minute Walk Test (6MWT) at study entry and after 12 months. Genotype at rs28357094 was determined after completion of the clinical evaluations. Patients were stratified in 2 groups according to a dominant model (TT homozygotes vs TG heterozygotes and GG homozygotes) and clinical data were retrospectively compared between groups.
Results:
Eighty patients were selected (age 4.1–19.3 years; mean 8.3 ± 2.7 SD). There were no differences in age or steroid treatment between the 2 subgroups. Paired t test showed a significant difference in both NSAA (p = 0.013) and 6MWT (p = 0.03) between baseline and follow-up after 12 months in patients with DMD carrying the G allele. The difference was not significant in the T subgroup. The analysis of covariance using age and baseline values as covariate and SPP1 genotype as fixed effect showed that these parameters are significantly correlated with the 12-month values.
Conclusions:
These data provide evidence of the role of SPP1 genotype as a disease modifier in DMD and support its relevance in the selection of homogeneous groups of patients for future clinical trials.
doi:10.1212/WNL.0b013e31825f04ea
PMCID: PMC3390537  PMID: 22744661
5.  24 Month Longitudinal Data in Ambulant Boys with Duchenne Muscular Dystrophy 
PLoS ONE  2013;8(1):e52512.
Objectives
The aim of the study was i) to assess the spectrum of changes over 24 months in ambulant boys affected by Duchenne muscular dystrophy, ii) to establish the difference between the first and the second year results and iii) to identify possible early markers of loss of ambulation.
Methods
One hundred and thirteen patients (age range 4.1–17, mean 8.2) fulfilled the inclusion criteria, 67 of the 113 were on daily and 40 on intermittent steroids, while 6 were not on steroids. All were assessed using the 6 Minute Walk Test (6MWT), the North Star Ambulatory Assessment (NSAA) and timed test.
Results
On the 6MWT there was an average overall decline of −22.7 (SD 81.0) in the first year and of −64.7 (SD 123.1) in the second year. On the NSAA the average overall decline was of −1.86 (SD 4.21) in the first year and of −2.98 (SD 5.19) in the second year. Fourteen children lost ambulation, one in the first year and the other 13 in the second year of the study. A distance of at least 330 meters on the 6MWT, or a NSAA score of 18 at baseline reduced significantly the risk of losing ambulation within 2 years.
Conclusions
These results can be of help at the time of using inclusion criteria for a study in ambulant patients in order to minimize the risk of patients who may lose ambulation within the time of the trial.
doi:10.1371/journal.pone.0052512
PMCID: PMC3543414  PMID: 23326337
6.  Quantitative muscle strength assessment in duchenne muscular dystrophy: longitudinal study and correlation with functional measures 
BMC Neurology  2012;12:91.
Background
The aim of this study was to perform a longitudinal assessment using Quantitative Muscle Testing (QMT) in a cohort of ambulant boys affected by Duchenne muscular dystrophy (DMD) and to correlate the results of QMT with functional measures. This study is to date the most thorough long-term evaluation of QMT in a cohort of DMD patients correlated with other measures, such as the North Star Ambulatory Assessment (NSAA) or thee 6-min walk test (6MWT).
Methods
This is a single centre, prospective, non-randomised, study assessing QMT using the Kin Com® 125 machine in a study cohort of 28 ambulant DMD boys, aged 5 to 12 years. This cohort was assessed longitudinally over a 12 months period of time with 3 monthly assessments for QMT and with assessment of functional abilities, using the NSAA and the 6MWT at baseline and at 12 months only. QMT was also used in a control group of 13 healthy age-matched boys examined at baseline and at 12 months.
Results
There was an increase in QMT over 12 months in boys below the age of 7.5 years while in boys above the age of 7.5 years, QMT showed a significant decrease. All the average one-year changes were significantly different than those experienced by healthy controls. We also found a good correlation between quantitative tests and the other measures that was more obvious in the stronger children.
Conclusion
Our longitudinal data using QMT in a cohort of DMD patients suggest that this could be used as an additional tool to monitor changes, providing additional information on segmental strength.
doi:10.1186/1471-2377-12-91
PMCID: PMC3482602  PMID: 22974002
7.  The empowerment of translational research: lessons from laminopathies 
The need for a collaborative approach to complex inherited diseases collectively referred to as laminopathies, encouraged Italian researchers, geneticists, physicians and patients to join in the Italian Network for Laminopathies, in 2009. Here, we highlight the advantages and added value of such a multidisciplinary effort to understand pathogenesis, clinical aspects and try to find a cure for Emery-Dreifuss muscular dystrophy, Mandibuloacral dysplasia, Hutchinson-Gilford Progeria and forms of lamin-linked cardiomyopathy, neuropathy and lipodystrophy.
doi:10.1186/1750-1172-7-37
PMCID: PMC3458975  PMID: 22691392
Laminopathies; Emery-Dreifuss Muscular Dystrophy; Dilated Cardiomyopathy with Conduction Defects; Mandibuloacral Dysplasia; Familial Partial Lipodystrophy Type 2; Hutchinson-Gilford Progeria Syndrome; Rare Diseases; Networking activity; interdisciplinary approach to diseases
8.  Urokinase Plasminogen Receptor and the Fibrinolytic Complex Play a Role in Nerve Repair after Nerve Crush in Mice, and in Human Neuropathies 
PLoS ONE  2012;7(2):e32059.
Remodeling of extracellular matrix (ECM) is a critical step in peripheral nerve regeneration. In fact, in human neuropathies, endoneurial ECM enriched in fibrin and vitronectin associates with poor regeneration and worse clinical prognosis. Accordingly in animal models, modification of the fibrinolytic complex activity has profound effects on nerve regeneration: high fibrinolytic activity and low levels of fibrin correlate with better nerve regeneration. The urokinase plasminogen receptor (uPAR) is a major component of the fibrinolytic complex, and binding to urokinase plasminogen activator (uPA) promotes fibrinolysis and cell movement. uPAR is expressed in peripheral nerves, however, little is known on its potential function on nerve development and regeneration. Thus, we investigated uPAR null mice and observed that uPAR is dispensable for nerve development, whereas, loss of uPAR affects nerve regeneration. uPAR null mice showed reduced nerve repair after sciatic nerve crush. This was a consequence of reduced fibrinolytic activity and increased deposition of endoneurial fibrin and vitronectin. Exogenous fibrinolysis in uPAR null mice rescued nerve repair after sciatic nerve crush. Finally, we measured the fibrinolytic activity in sural nerve biopsies from patients with peripheral neuropathies. We showed that neuropathies with defective regeneration had reduced fibrinolytic activity. On the contrary, neuropathies with signs of active regeneration displayed higher fibrinolytic activity. Overall, our results suggest that enforced fibrinolysis may facilitate regeneration and outcome of peripheral neuropathies.
doi:10.1371/journal.pone.0032059
PMCID: PMC3283718  PMID: 22363796
9.  Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis 
The Journal of Cell Biology  2004;167(4):711-721.
Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth (CMT) type 4B1, a demyelinating neuropathy with myelin outfolding and azoospermia. MTMR2 encodes a ubiquitously expressed phosphatase whose preferred substrate is phosphatidylinositol (3,5)-biphosphate, a regulator of membrane homeostasis and vesicle transport. We generated Mtmr2-null mice, which develop progressive neuropathy characterized by myelin outfolding and recurrent loops, predominantly at paranodal myelin, and depletion of spermatids and spermatocytes from the seminiferous epithelium, which leads to azoospermia. Disruption of Mtmr2 in Schwann cells reproduces the myelin abnormalities. We also identified a novel physical interaction in Schwann cells, between Mtmr2 and discs large 1 (Dlg1)/synapse-associated protein 97, a scaffolding molecule that is enriched at the node/paranode region. Dlg1 homologues have been located in several types of cellular junctions and play roles in cell polarity and membrane addition. We propose that Schwann cell–autonomous loss of Mtmr2–Dlg1 interaction dysregulates membrane homeostasis in the paranodal region, thereby producing outfolding and recurrent loops of myelin.
doi:10.1083/jcb.200407010
PMCID: PMC2172586  PMID: 15557122
10.  Conditional disruption of β1 integrin in Schwann cells impedes interactions with axons 
The Journal of Cell Biology  2002;156(1):199-210.
In dystrophic mice, a model of merosin-deficient congenital muscular dystrophy, laminin-2 mutations produce peripheral nerve dysmyelination and render Schwann cells unable to sort bundles of axons. The laminin receptor and the mechanism through which dysmyelination and impaired sorting occur are unknown. We describe mice in which Schwann cell–specific disruption of β1 integrin, a component of laminin receptors, causes a severe neuropathy with impaired radial sorting of axons. β1-null Schwann cells populate nerves, proliferate, and survive normally, but do not extend or maintain normal processes around axons. Interestingly, some Schwann cells surpass this problem to form normal myelin, possibly due to the presence of other laminin receptors such as dystroglycan and α6β4 integrin. These data suggest that β1 integrin links laminin in the basal lamina to the cytoskeleton in order for Schwann cells to ensheath axons, and alteration of this linkage contributes to the peripheral neuropathy of congenital muscular dystrophy.
doi:10.1083/jcb.200109021
PMCID: PMC2173589  PMID: 11777940
axo–glial interactions; Cre/loxP; congenital muscular dystrophy; laminin; peripheral nerve
11.  Epitope-Tagged P0Glycoprotein Causes Charcot-Marie-Tooth–Like Neuropathy in Transgenic Mice 
The Journal of Cell Biology  2000;151(5):1035-1046.
In peripheral nerve myelin, the intraperiod line results from compaction of the extracellular space due to homophilic adhesion between extracellular domains (ECD) of the protein zero (P0) glycoprotein. Point mutations in this region of P0 cause human hereditary demyelinating neuropathies such as Charcot-Marie-Tooth. We describe transgenic mice expressing a full-length P0 modified in the ECD with a myc epitope tag. The presence of the myc sequence caused a dysmyelinating peripheral neuropathy similar to two distinct subtypes of Charcot-Marie-Tooth, with hypomyelination, altered intraperiod lines, and tomacula (thickened myelin). The tagged protein was incorporated into myelin and was associated with the morphological abnormalities. In vivo and in vitro experiments showed that P0myc retained partial adhesive function, and suggested that the transgene inhibits P0-mediated adhesion in a dominant-negative fashion. These mice suggest new mechanisms underlying both the pathogenesis of P0 ECD mutants and the normal interactions of P0 in the myelin sheath.
PMCID: PMC2174348  PMID: 11086005
Charcot-Marie-Tooth disease; myelin protein zero; tomacula; transgenic mice; Myc-tag
12.  P0 Glycoprotein Overexpression Causes Congenital Hypomyelination of Peripheral Nerves 
The Journal of Cell Biology  2000;148(5):1021-1034.
We show that normal peripheral nerve myelination depends on strict dosage of the most abundantly expressed myelin gene, myelin protein zero (Mpz). Transgenic mice containing extra copies of Mpz manifested a dose-dependent, dysmyelinating neuropathy, ranging from transient perinatal hypomyelination to arrested myelination and impaired sorting of axons by Schwann cells. Myelination was restored by breeding the transgene into the Mpz-null background, demonstrating that dysmyelination does not result from a structural alteration or Schwann cell-extrinsic effect of the transgenic P0 glycoprotein. Mpz mRNA overexpression ranged from 30–700%, whereas an increased level of P0 protein was detected only in nerves of low copy-number animals. Breeding experiments placed the threshold for dysmyelination between 30 and 80% Mpz overexpression. These data reveal new points in nerve development at which Schwann cells are susceptible to increased gene dosage, and suggest a novel basis for hereditary neuropathy.
PMCID: PMC2174542  PMID: 10704451
axon sorting; myelin; neuropathy; Schwann cell; transgene
13.  Foot Pad Skin Biopsy in Mouse Models of Hereditary Neuropathy 
Glia  2010;58(16):2005-2016.
Numerous transgenic and knockout mouse models of human hereditary neuropathies have become available over the past decade. We describe a simple, reproducible, and safe biopsy of mouse skin for histopathological evaluation of the peripheral nervous system (PNS) in models of hereditary neuropathies. We compared the diagnostic outcome between sciatic nerve and dermal nerves found in skin biopsy (SB) from the hind foot. A total of five animal models of different Charcot-Marie-Tooth neuropathies, and one model of congenital muscular dystrophy associated neuropathy were examined. In wild type mice, dermal nerve fibers were readily identified by immunohistochemistry, light, and electron microscopy and they appeared similar to myelinated fibers in sciatic nerve. In mutant mice, SB manifested myelin abnormalities similar to those observed in sciatic nerves, including hypomyelination, onion bulbs, myelin outfolding, redundant loops, and tomacula. In many strains, however, SB showed additional abnormalities—fiber loss, dense neurofilament packing with lower phosphorylation status, and axonal degeneration—undetected in sciatic nerve, possibly because SB samples distal nerves. SB, a reliable technique to investigate peripheral neuropathies in human beings, is also useful to investigate animal models of hereditary neuropathies. Our data indicate that SB may reveal distal axonal pathology in mouse models and permits sequential follow-up of the neuropathy in an individual mouse, thereby reducing the number of mice necessary to document pathology of the PNS. © 2010 Wiley-Liss, Inc.
doi:10.1002/glia.21069
PMCID: PMC3034192  PMID: 20878767
CMT; sural nerve; dermal nerve; epidermal nerve

Results 1-13 (13)