PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease 
Neurology  2013;80(13):1194-1201.
Objective:
To examine the effect of education (a surrogate measure of cognitive reserve) on FDG-PET brain metabolism in elderly cognitively healthy (HC) subjects with preclinical Alzheimer disease (AD).
Methods:
Fifty-two HC subjects (mean age 75 years) with FDG-PET and CSF measurement of Aβ1-42 were included from the prospective Alzheimer's Disease Neuroimaging Initiative biomarker study. HC subjects received a research classification of preclinical AD if CSF Aβ1-42 was <192 pg/mL (Aβ1-42 [+]) vs HC with normal Aβ (Aβ1-42 [−]). In regression analyses, we tested the interaction effect between education and CSF Aβ1-42 status (Aβ1-42 [+] vs Aβ1-42 [−]) on FDG-PET metabolism in regions of interest (ROIs) (posterior cingulate, angular gyrus, inferior/middle temporal gyrus) and the whole brain (voxel-based).
Results:
An interaction between education and CSF Aβ1-42 status was observed for FDG-PET in the posterior cingulate (p < 0.001) and angular gyrus ROIs (p = 0.03), but was not significant for the inferior/middle temporal gyrus ROI (p = 0.06), controlled for age, sex, and global cognitive ability (Alzheimer’s Disease Assessment Scale–cognitive subscale). The interaction effect was such that higher education was associated with lower FDG-PET in the Aβ1-42 (+) group, but with higher FDG-PET in the Aβ1-42 (−) group. Voxel-based analysis showed that this interaction effect was primarily restricted to temporo-parietal and ventral prefrontal brain areas.
Conclusions:
Higher education was associated with lower FDG-PET in preclinical AD (Aβ1-42 [+]), suggesting that cognitive reserve had a compensatory function to sustain cognitive ability in presence of early AD pathology that alters FDG-PET metabolism.
doi:10.1212/WNL.0b013e31828970c2
PMCID: PMC3691784  PMID: 23486873
2.  Differences in Prefrontal, Limbic, and White Matter Lesion Volumes According to Cognitive Status in Elderly Patients with First-Onset Subsyndromal Depression 
PLoS ONE  2014;9(1):e87747.
The purpose of this preliminary study was to test the hypothesis that subsyndromal depression is associated with the volume of medial prefrontal regional gray matter and that of white matter lesions (WMLs) in the brains of cognitively normal older people. We also explored the relationships between subsyndromal depression and medial prefrontal regional gray matter volume, limbic regional gray matter volume, and lobar WMLs in the brains of patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We performed a cross-sectional study comparing patients with subsyndromal depression and nondepressed controls with normal cognition (n = 59), MCI (n = 27), and AD (n = 27), adjusting for sex, age, years of education, and results of the Mini-Mental State Examination. Frontal WML volume was greater, and right medial orbitofrontal cortical volume was smaller in cognitively normal participants with subsyndromal depression than in those without subsyndromal depression. No volume differences were observed in medial prefrontal, limbic, or WML volumes according to the presence of subsyndromal depression in cognitively impaired patients. The absence of these changes in patients with MCI and AD suggests that brain changes associated with AD pathology may override the changes associated with subsyndromal depression.
doi:10.1371/journal.pone.0087747
PMCID: PMC3909227  PMID: 24498184
3.  Effects of Baseline CSF α-Synuclein on Regional Brain Atrophy Rates in Healthy Elders, Mild Cognitive Impairment and Alzheimer’s Disease 
PLoS ONE  2013;8(12):e85443.
Background
Cerebrospinal fluid (CSF) α-synuclein is reduced in synucleinopathies, including dementia with Lewy bodies, and some studies have found increased CSF α-synuclein in Alzheimer’s disease (AD). No study has explored effects of CSF α-synuclein on brain atrophy. Here we tested if baseline CSF α-synuclein affects brain atrophy rates and if these effects vary across brain regions, and across the cognitive spectrum from healthy elders (NL), to patients with mild cognitive impairment (MCI) and AD.
Methods
Baseline CSF α-synuclein measurements and longitudinal structural brain magnetic resonance imaging was performed in 74 NL, 118 MCI patients and 55 AD patients. Effects of baseline CSF α-synuclein on regional atrophy rates were tested in 1) four pre-hoc defined regions possibly associated with Lewy body and/or AD pathology (amygdala, caudate, hippocampus, brainstem), and 2) all available regions of interest. Differences across diagnoses were tested by assessing the interaction of CSF α-synuclein and diagnosis (testing NL versus MCI, and NL versus AD).
Results
The effects of CSF α-synuclein on longitudinal atrophy rates were not significant after correction for multiple comparisons. There were tendencies for effects in AD in caudate (higher atrophy rates in subjects with higher CSF α-synuclein, P=0.046) and brainstem (higher atrophy rates in subjects with lower CSF α-synuclein, P=0.063). CSF α-synuclein had significantly different effects on atrophy rates in NL and AD in brainstem (P=0.037) and caudate (P=0.006).
Discussion: With the possible exception of caudate and brainstem, the overall weak effects of CSF α-synuclein on atrophy rates in NL, MCI and AD argues against CSF α-synuclein as a biomarker related to longitudinal brain atrophy in these diagnostic groups. Any effects of CSF α-synuclein may be attenuated by possible simultaneous occurrence of AD-related neuronal injury and concomitant Lewy body pathology, which may elevate and reduce CSF α-synuclein levels, respectively.
doi:10.1371/journal.pone.0085443
PMCID: PMC3877372  PMID: 24392009
4.  A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment 
Brain imaging and behavior  2012;6(4):517-527.
The Alzheimer’s Disease Neuroimaging Initiative (ADNI) measures abilities broadly related to executive function (EF), including WAIS-R Digit Symbol Substitution, Digit Span Backwards, Trails A and B, Category Fluency, and Clock Drawing. This study investigates whether a composite executive function measure based on these multiple indicators has better psychometric characteristics than the widely used individual components. We applied item response theory methods to 800 ADNI participants to derive an EF composite score (ADNI-EF) from the above measures. We then compared ADNI-EF with component measures in 390 longitudinally-followed participants with mild cognitive impairment (MCI) with respect to: (1) Ability to detect change over time; (2) Ability to predict conversion to dementia; (3) Strength of cross-sectional association with MRI-derived measures of structures involved in frontal systems, and (4) Strength of baseline association with cerebrospinal fluid (CSF) levels of amyloid β1-42, total tau, and phosphorylated tau181P. ADNI-EF showed the greatest change over time, followed closely by Category Fluency. ADNI-EF needed a 40 % smaller sample size to detect change. ADNI-EF was the strongest predictor of AD conversion. ADNI-EF was the only measure significantly associated with all the MRI regions, though other measures were more strongly associated in a few of the regions. ADNI-EF was associated with all the CSF measures. ADNI-EF appears to be a useful composite measure of EF in MCI, as good as or better than any of its composite parts. This study demonstrates an approach to developing a psychometrically sophisticated composite score from commonly-used tests.
doi:10.1007/s11682-012-9176-1
PMCID: PMC3684181  PMID: 22644789
Executive function; Mild cognitive impairment; Item response theory; Composite scores
5.  Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
Brain imaging and behavior  2012;6(4):502-516.
We sought to develop and evaluate a composite memory score from the neuropsychological battery used in the Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI). We used modern psychometric approaches to analyze longitudinal Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD Assessment Schedule - Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination (MMSE), and Logical Memory data to develop ADNI-Mem, a composite memory score. We compared RAVLT and ADAS-Cog versions, and compared ADNI-Mem to AVLT recall sum scores, four ADAS-Cog-derived scores, the MMSE, and the Clinical Dementia Rating Sum of Boxes. We evaluated rates of decline in normal cognition, mild cognitive impairment (MCI), and AD, ability to predict conversion from MCI to AD, strength of association with selected imaging parameters, and ability to differentiate rates of decline between participants with and without AD cerebrospinal fluid (CSF) signatures. The second version of the RAVLT was harder than the first. The ADAS-Cog versions were of similar difficulty. ADNI-Mem was slightly better at detecting change than total RAVLT recall scores. It was as good as or better than all of the other scores at predicting conversion from MCI to AD. It was associated with all our selected imaging parameters for people with MCI and AD. Participants with MCI with an AD CSF signature had somewhat more rapid decline than did those without. This paper illustrates appropriate methods for addressing the different versions of word lists, and demonstrates the additional power to be gleaned with a psychometrically sound composite memory score.
doi:10.1007/s11682-012-9186-z
PMCID: PMC3806057  PMID: 22782295
Memory; psychometrics; longitudinal analysis; cognition; hippocampus
6.  Greater regional brain atrophy rate in healthy elders with a history of cigarette smoking 
Background
Little is known about the effects of cigarette smoking on brain morphological changes in the elderly. This study investigated the effects of a history of cigarette smoking on changes in regional brain volumes over 2-years in healthy, cognitively-intact elderly individuals. We predicted individuals with a history of cigarette smoking, compared to never smokers, demonstrate greater rate of atrophy over 2-years in regions that manifest morphological abnormalities in the early stages of Alzheimer Disease (AD), as well as the extended brain reward system (BRS), which is implicated in the development and maintenance of substance use disorders.
Methods
Participants were healthy, cognitively normal elderly controls (75.9±4.8 years of age) with any lifetime history of cigarette smoking (n = 68) and no history of smoking (n = 118). Data was obtained via the Alzheimer Disease Neuroimaging Initiative from 2005–2010. Participants completed four magnetic resonance scans over 2-years. A standardized protocol employing high resolution 3D T1-weighted sequences at 1.5 Tesla was used for structural imaging and regional brain volumetric analyses.
Results
Smokers demonstrated significantly greater rate atrophy over 2-years than non-smokers in multiple brain regions associated with the early stages of AD as well as in the BRS. Groups were not different on rate of global cortical atrophy.
Conclusions
A history of cigarette smoking in this healthy elderly cohort was associated with decreased structural integrity of multiple brain regions, which was manifest as a greater rate of atrophy over 2-years in regions specifically affected by incipient AD as well as chronic substance abuse.
doi:10.1016/j.jalz.2011.10.006
PMCID: PMC3484322  PMID: 23102121
Alzheimer Disease; MRI, neuroimaging; brain volumes; brain reward system; substance abuse; nicotine; brain atrophy; longitudinal
7.  Early Indications of Future Cognitive Decline: Stable versus Declining Controls 
PLoS ONE  2013;8(9):e74062.
This study aimed to identify baseline features of normal subjects that are associated with subsequent cognitive decline. Publicly available data from the Alzheimer’s Disease Neuroimaging Initiative was used to find differences in baseline clinical assessments (ADAScog, AVLT, FAQ) between cognitively healthy individuals who will suffer cognitive decline within 48 months and those who will remain stable for that period. Linear regression models indicated an individual’s conversion status was significantly associated with certain baseline neuroimaging measures, including posterior cingulate glucose metabolism. Linear Discriminant Analysis models built with baseline features derived from MRI and FDG-PET measures were capable of successfully predicting whether an individual will convert to MCI within 48 months or remain cognitively stable. The findings from this study support the idea that there exist informative differences between normal people who will later develop cognitive impairments and those who will remain cognitively stable for up to four years. Further, the feasibility of developing predictive models that can detect early states of cognitive decline in seemingly normal individuals was demonstrated.
doi:10.1371/journal.pone.0074062
PMCID: PMC3767625  PMID: 24040166
8.  CSF Biomarker and PIB-PET–Derived Beta-Amyloid Signature Predicts Metabolic, Gray Matter, and Cognitive Changes in Nondemented Subjects 
Cerebral Cortex (New York, NY)  2011;22(9):1993-2004.
Beta-amyloid (Aβ) is a histopathological hallmark of Alzheimer’s disease dementia, but high levels of Aβ in the brain can also be found in a substantial proportion of nondemented subjects. Here we investigated which 2-year rate of brain and cognitive changes are present in nondemented subjects with high and low Aβ levels, as assessed with cerebrospinal fluid and molecular positron emission tomography (PET)–based biomarkers of Aβ. In subjects with mild cognitive impairment, increased brain Aβ levels were associated with significantly faster cognitive decline, progression of gray matter atrophy within temporal and parietal brain regions, and a trend for a faster decline in parietal Fludeoxyglucose (FDG)-PET metabolism. Changes in gray matter and FDG-PET mediated the association between Aβ and cognitive decline. In contrast, elderly cognitively healthy controls (HC) with high Aβ levels showed only a faster medial temporal lobe and precuneus volume decline compared with HC with low Aβ. In conclusion, the current results suggest not only that both functional and volumetric brain changes are associated with high Aβ years before the onset of dementia but also that HC with substantial Aβ levels show higher Aβ pathology resistance, lack other pathologies that condition neurotoxic effects of Aβ, or accumulated Aβ for a shorter time period.
doi:10.1093/cercor/bhr271
PMCID: PMC3500862  PMID: 22038908
Aβ; FDG-PET; MCI; PIB-PET
9.  Longitudinal Stability of Subsyndromal Symptoms of Depression in Individuals with Mild Cognitive Impairment: Relationship to Conversion to Dementia after Three Years 
Objective
To evaluate the degree to which longitudinal stability of subsyndromal symptoms of depression (SSD) is associated with conversion to dementia in patients with Mild Cognitive Impairment (MCI).
Methods
Data from 405 MCI participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study were analyzed. Participants were evaluated at baseline and 12 month intervals over three years. Participants were designated as MCI Converters if dementia was diagnosed within 3 years or as Cognitively Stable MCI if dementia was not diagnosed during this interval. SSD were evaluated utilizing the 15-item Geriatric Depression Scale (GDS). Endorsement of specific SSD at baseline and the stability of SSD over 36 months were compared between the two MCI groups.
Results
Baseline symptom endorsement and stability of total GDS scores did not differentiate MCI groups. Worsening of 4 individual items from the GDS over time (memory problems, feelings of helplessness, loss of interest, and preference for staying at home) differentiated MCI converters from cognitively stable MCI (p <0.05 for all). However, only increased endorsement of memory symptoms over time was associated with progression to dementia after controlling for other clinical variables (p=0.05).
Conclusions
SSD in MCI participants largely consist of cognitive symptoms and activity limitations and the stability of SSD over time differentiated the MCI groups better than baseline endorsement of symptoms. However, the only significant predictor of conversion to dementia was increased endorsement of memory problems, which likely represents insight into cognitive problems more than depressive symptomatology in MCI individuals.
doi:10.1002/gps.2713
PMCID: PMC3685477  PMID: 21744390
subsyndromal depression; longitudinal stability; mild cognitive impairment; insight; dementia
10.  Nonlinear time course of brain volume loss in cognitively normal and impaired elders 
Neurobiology of Aging  2010;33(5):845-855.
The goal was to elucidate the time course of regional brain atrophy rates relative to age in cognitively normal (CN) aging, mild cognitively impairment (MCI) and Alzheimer’s disease (AD), without a-priori models for atrophy progression. Regional brain volumes from 147 CN subjects, 164 stable MCI, 93 MCI-to-AD converters and 111 AD patients, between 51 to 91 years old and who had repeated 1.5T magnetic resonance imaging (MRI) scans over 30 months, were analyzed. Relations between regional brain volume change and age were determined using generalized additive models, an established non-parametric concept for approximating nonlinear relations. Brain atrophy rates varied nonlinearly with age, predominantly in regions of the temporal lobe. Moreover, the atrophy rates of some regions leveled off with increasing age in control and stable MCI subjects whereas those rates progressed further in MCI-to-AD converters and AD patients. The approach has potential uses for early detection of AD and differentiation between stable and progressing MCI.
doi:10.1016/j.neurobiolaging.2010.07.012
PMCID: PMC3032014  PMID: 20855131
Alzheimer’s disease; mild cognitive impairment; aging; brain atrophy; hippocampus; magnetic resonance imaging; generalized additive models
11.  Different associations of white matter lesions with depression and cognition 
BMC Neurology  2012;12:83.
Background
To test the hypothesis that white matter lesions (WML) are primarily associated with regional frontal cortical volumes, and to determine the mediating effects of these regional frontal cortices on the associations of WML with depressive symptoms and cognitive dysfunction.
Methods
Structural brains MRIs were performed on 161 participants: cognitively normal, cognitive impaired but not demented, and demented participants. Lobar WML volumes, regional frontal cortical volumes, depressive symptom severity, and cognitive abilities were measured. Multiple linear regression analyses were used to identify WML volume effects on frontal cortical volume. Structural equation modeling was used to determine the MRI-depression and the MRI-cognition path relationships.
Results
WML predicted frontal cortical volume, particularly in medial orbirtofrontal cortex, irrespective of age, gender, education, and group status. WML directly predicted depressive score, and this relationship was not mediated by regional frontal cortices. In contrast, the association between WML and cognitive function was indirect and mediated by regional frontal cortices.
Conclusions
These findings suggest that the neurobiological mechanisms underpinning depressive symptoms and cognitive dysfunction in older adults may differ.
doi:10.1186/1471-2377-12-83
PMCID: PMC3482604  PMID: 22920586
Leukoaraiosis; Depression; Cognition; Frontal lobe; Mediation
12.  Treatment With Cholinesterase Inhibitors and Memantine of Patients in the Alzheimer’s Disease Neuroimaging Initiative 
Archives of Neurology  2011;68(1):58-66.
Objectives
To assess the clinical characteristics and course of patients with mild cognitive impairment (MCI) and mild Alzheimer disease (AD) treated with cholinesterase inhibitors (ChEIs) and memantine hydrochloride.
Design
Cohort study.
Setting
The 59 recruiting sites for the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
Participants
Outpatients with MCI and AD in ADNI.
Main Outcome Measures
The AD Assessment Scale–cognitive subscale (ADAS-cog), Mini-Mental State Examination (MMSE), Clinical Dementia Rating (CDR) scale, and Functional Activities Questionnaire (FAQ).
Results
A total of 177 (44.0%) of 402 MCI patients and 159 (84.6%) of 188 mild-AD patients were treated with ChEIs and 11.4% of MCI patients and 45.7% of AD patients with memantine at entry. Mild-cognitive-impairment patients who received ChEIs with or without memantine were more impaired, showed greater decline in scores, and progressed to dementia sooner than patients who did not receive ChEIs. Alzheimer-disease patients who received ChEIs and memantine took them longer, were more functionally impaired, and showed greater decline on the MMSE and CDR (but not on the ADAS-cog or FAQ) than those who received ChEIs only.
Conclusions
Academic physicians frequently prescribe ChEIs and memantine earlier than indicated in the US Food and Drug Administration–approved labeling to patients who are relatively more severely impaired or who are rapidly progressing toward cognitive impairment. The use of these medications in ADNI is associated with clinical decline and may affect the interpretation of clinical trial outcomes.
Study Registration
clinicalTrials.gov Identifier: NCT00106899
doi:10.1001/archneurol.2010.343
PMCID: PMC3259850  PMID: 21220675
13.  Characteristics and Performance of a Modified Version of the ADCS-CGIC CIBIC+ for Mild Cognitive Impairment Clinical Trials 
Introduction
The Alzheimer's Disease Cooperative Study - Clinical Global Impression of Change (ADCS-CGIC) was modified for use in mild cognitive impairment (MCI) trials and tested in the ADCS MCI randomized clinical trial of donepezil, vitamin E and placebo. We assessed feasibility for its use by determining whether or not: (1) it distinguished a medication effect at 6- and 12- months, (2) baseline demographic or clinical characteristics predicted change, (3) there was an association between MCI-CGIC and change in other clinical measures in order to evaluate external or concurrent validity.
Methods
We used a generalized estimating equations approach for ordinal outcome data to test the effects of treatment, baseline characteristics and change in clinical measures on the MCI-CGIC over 12 months, and ordinal logistic regression to assess the association between MCI-CGIC and change in clinical measures at 6 months and 12 months.
Results
On the MCI-CGIC overall, 12.9% and 10.6% were rated as having improved, and 31.6% and 39.8% as having worsened over 6- and 12-months, respectively. The MCI-CGIC did not distinguish the donepezil or vitamin E groups from placebo at 6 and 12 months treatment. Variables at screening or baseline that were associated with worse CGIC scores over 6 and 12 months included white race, greater years of education, worse depression, dementia severity rating, cognitive, and daily activities scores, and lower memory domain scores on a neuropsychological battery. Rate of worsening on the MCI-CGIC over 12 months was associated with change on the AD Assessment Scale-cognitive (ADAS-cog) and on executive function. Worsening at 6 months and 12 months, separately, were associated with the corresponding change in ADAS-cog, ADL, BDI, MMSE, CDR-sb, memory, and executive function.
Conclusions
Change detected by the MCI-CGIC was associated with baseline clinical severity and with change in clinical ratings over 6 and 12 months, supporting the validity of a CGIC approach in MCI. The effect size of the donepezil-placebo difference was similar to that of other outcomes at 12 months. About 40% of MCI patients were judged worse and about 11% improved, consistent with clinical experience and other ratings.
doi:10.1097/WAD.0b013e31819cb760
PMCID: PMC2762354  PMID: 19812469
Mild cognitive impairment; Alzheimer's disease; dementia; global impression of change; rating scales; donepezil; vitamin E; clinical trials

Results 1-13 (13)