PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Ineffective Erythropoiesis in β-Thalassemia 
The Scientific World Journal  2013;2013:394295.
In humans, β-thalassemia dyserythropoiesis is characterized by expansion of early erythroid precursors and erythroid progenitors and then ineffective erythropoiesis. This ineffective erythropoiesis is defined as a suboptimal production of mature erythrocytes originating from a proliferating pool of immature erythroblasts. It is characterized by (1) accelerated erythroid differentiation, (2) maturation blockade at the polychromatophilic stage, and (3) death of erythroid precursors. Despite extensive knowledge of molecular defects causing β-thalassemia, less is known about the mechanisms responsible for ineffective erythropoiesis. In this paper, we will focus on the underlying mechanisms leading to premature death of thalassemic erythroid precursors in the bone marrow.
doi:10.1155/2013/394295
PMCID: PMC3628659  PMID: 23606813
2.  Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: a prospective observational cohort study 
BMC Nephrology  2012;13:83.
Background
Sickle cell disease (SCD) leads to tissue hypoxia resulting in chronic organ dysfunction including SCD associated nephropathy. The goal of our study was to determine the best equation to estimate glomerular filtration rate (GFR) in SCD adult patients.
Methods
We conducted a prospective observational cohort study. Since 2007, all adult SCD patients in steady state, followed in two medical departments, have had their GFR measured using iohexol plasma clearance (gold standard). The Cockcroft-Gault, MDRD-v4, CKP-EPI and finally, MDRD and CKD-EPI equations without adjustment for ethnicity were tested to estimate GFR from serum creatinine. Estimated GFRs were compared to measured GFRs according to the graphical Bland and Altman method.
Results
Sixty-four SCD patients (16 men, median age 27.5 years [range 18.0-67.5], 41 with SS-genotype were studied. They were Sub-Saharan Africa and French West Indies natives and predominantly lean (median body mass index: 22 kg/m2 [16-33]). Hyperfiltration (defined as measured GFR >110 mL/min/1.73 m2) was detected in 53.1% of patients. Urinary albumin/creatinine ratio was higher in patients with hyperfiltration than in patients with normal GFR (4.05 mg/mmol [0.14-60] versus 0.4 mg/mmol [0.7-81], p = 0.01). The CKD-EPI equation without adjustment for ethnicity had both the lowest bias and the greatest precision. Differences between estimated GFRs using the CKP-EPI equation and measured GFRs decreased with increasing GFR values, whereas it increased with the Cockcroft-Gault and MDRD-v4 equations.
Conclusions
We confirm that SCD patients have a high rate of glomerular hyperfiltration, which is frequently associated with microalbuminuria or macroalbuminuria. In non-Afro-American SCD patients, the best method for estimating GFR from serum creatinine is the CKD-EPI equation without adjustment for ethnicity. This equation is particularly accurate to estimate high GFR values, including glomerular hyperfiltration, and thus should be recommended to screen SCD adult patients at high risk for SCD nephropathy.
doi:10.1186/1471-2369-13-83
PMCID: PMC3465224  PMID: 22866669
Sickle cell disease; Glomerular hyperfiltration; Albuminuria; Glomerular filtration rate; CKD-EPI equation; Iohexol plasma clearance; Ethnicity
3.  Proliferating cell nuclear antigen acts as a cytoplasmic platform controlling human neutrophil survival 
The Journal of Experimental Medicine  2010;207(12):2631-2645.
Cytosolic proliferating cell nuclear antigen (PCNA) binds to procaspases and protects human neutrophils from apoptosis.
Neutrophil apoptosis is a highly regulated process essential for inflammation resolution, the molecular mechanisms of which are only partially elucidated. In this study, we describe a survival pathway controlled by proliferating cell nuclear antigen (PCNA), a nuclear factor involved in DNA replication and repairing of proliferating cells. We show that mature neutrophils, despite their inability to proliferate, express high levels of PCNA exclusively in their cytosol and constitutively associated with procaspases, presumably to prevent their activation. Notably, cytosolic PCNA abundance decreased during apoptosis, and increased during in vitro and in vivo exposure to the survival factor granulocyte colony-stimulating factor (G-CSF). Peptides derived from the cyclin-dependent kinase inhibitor p21, which compete with procaspases to bind PCNA, triggered neutrophil apoptosis thus demonstrating that specific modification of PCNA protein interactions affects neutrophil survival. Furthermore, PCNA overexpression rendered neutrophil-differentiated PLB985 myeloid cells significantly more resistant to TNF-related apoptosis-inducing ligand– or gliotoxin-induced apoptosis. Conversely, a decrease in PCNA expression after PCNA small interfering RNA transfection sensitized these cells to apoptosis. Finally, a mutation in the PCNA interdomain-connecting loop, the binding site for many partners, significantly decreased the PCNA-mediated antiapoptotic effect. These results identify PCNA as a regulator of neutrophil lifespan, thereby highlighting a novel target to potentially modulate pathological inflammation.
doi:10.1084/jem.20092241
PMCID: PMC2989777  PMID: 20975039
4.  Targeting iron homeostasis induces cellular differentiation and synergizes with differentiating agents in acute myeloid leukemia 
Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.
doi:10.1084/jem.20091488
PMCID: PMC2856037  PMID: 20368581

Results 1-4 (4)