PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Diagnostic Potential of Plasmatic MicroRNA Signatures in Stable and Unstable Angina 
PLoS ONE  2013;8(11):e80345.
Purpose
We examined circulating miRNA expression profiles in plasma of patients with coronary artery disease (CAD) vs. matched controls, with the aim of identifying novel discriminating biomarkers of Stable (SA) and Unstable (UA) angina.
Methods
An exploratory analysis of plasmatic expression profile of 367 miRNAs was conducted in a group of SA and UA patients and control donors, using TaqMan microRNA Arrays. Screening confirmation and expression analysis were performed by qRT-PCR: all miRNAs found dysregulated were examined in the plasma of troponin-negative UA (n=19) and SA (n=34) patients and control subjects (n=20), matched for sex, age, and cardiovascular risk factors. In addition, the expression of 14 known CAD-associated miRNAs was also investigated.
Results
Out of 178 miRNAs consistently detected in plasma samples, 3 showed positive modulation by CAD when compared to controls: miR-337-5p, miR-433, and miR-485-3p. Further, miR-1, -122, -126, -133a, -133b, and miR-199a were positively modulated in both UA and SA patients, while miR-337-5p and miR-145 showed a positive modulation only in SA or UA patients, respectively. ROC curve analyses showed a good diagnostic potential (AUC ≥ 0.85) for miR-1, -126, and -483-5p in SA and for miR-1, -126, and -133a in UA patients vs. controls, respectively. No discriminating AUC values were observed comparing SA vs. UA patients. Hierarchical cluster analysis showed that the combination of miR-1, -133a, and -126 in UA and of miR-1, -126, and -485-3p in SA correctly classified patients vs. controls with an efficiency ≥ 87%. No combination of miRNAs was able to reliably discriminate patients with UA from patients with SA.
Conclusions
This work showed that specific plasmatic miRNA signatures have the potential to accurately discriminate patients with angiographically documented CAD from matched controls. We failed to identify a plasmatic miRNA expression pattern capable to differentiate SA from UA patients.
doi:10.1371/journal.pone.0080345
PMCID: PMC3829878  PMID: 24260372
2.  Circulating Levels of Dimethylarginines, Chronic Kidney Disease and Long-Term Clinical Outcome in Non-ST-Elevation Myocardial Infarction 
PLoS ONE  2012;7(11):e48499.
Background
Mechanisms linking chronic kidney disease (CKD) and adverse outcomes in acute coronary syndromes (ACS) are not fully understood. Among potential key players, reduced nitric oxide (NO) synthesis due to its endogenous inhibitors, asymmetric (ADMA) and symmetric (SDMA) dimethylarginine could be involved. We measured plasma concentration of arginine, ADMA and SDMA and investigated their relationship with CKD and long-term outcome in non-ST-elevation myocardial infarction (NSTEMI).
Methodology/Principal Findings
We prospectively measured arginine, ADMA, and SDMA at hospital admission in 104 NSTEMI patients. CKD was defined as an estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2. We considered a primary end point of combined cardiac death and re-infarction at a median follow-up of 21 months. In CKD (n = 33) and no-CKD (n = 71) patients, arginine and ADMA were similar, whereas SDMA was significantly higher in CKD patients (0.65±0.23 vs. 0.42±0.12 µmol/L; P<0.0001). Twenty-four (23%) patients had an adverse cardiac event during follow-up: 12 (36%) were CKD and 12 (17%) no-CKD patients (P = 0.02). When study population was stratified according to arginine, ADMA and SDMA median values, only SDMA (median 0.46 µmol/L) was associated with the primary end-point (P = 0.0016). In models adjusted for age, hemoglobin and left ventricular ejection fraction, the hazard ratio (HR) for CKD and SDMA were high (HR 2.93, interquartile range [IQR] 1.15–7.53; P = 0.02 and HR 6.80, IQR 2.09–22.2; P = 0.001, respectively) but, after mutual adjustment, only SDMA remained significantly associated with the primary end point (HR 5.73, IQR 1.55–21.2; P = 0.009).
Conclusions/Significance
In NSTEMI patients, elevated SDMA plasma levels are associated with CKD and worse long-term prognosis.
doi:10.1371/journal.pone.0048499
PMCID: PMC3501498  PMID: 23185262
3.  Chronic kidney disease in acute coronary syndromes 
World Journal of Nephrology  2012;1(5):134-145.
Chronic kidney disease (CKD) is associated with a high burden of coronary artery disease. In patients with acute coronary syndromes (ACS), CKD is highly prevalent and associated with poor short- and long-term outcomes. Management of patients with CKD presenting with ACS is more complex than in the general population because of the lack of well-designed randomized trials assessing therapeutic strategies in such patients. The almost uniform exclusion of patients with CKD from randomized studies evaluating new targeted therapies for ACS, coupled with concerns about further deterioration of renal function and therapy-related toxic effects, may explain the less frequent use of proven medical therapies in this subgroup of high-risk patients. However, these patients potentially have much to gain from conventional revascularization strategies used in the general population. The objective of this review is to summarize the current evidence regarding the epidemiology and the clinical and prognostic relevance of CKD in ACS patients, in particular with respect to unresolved issues and uncertainties regarding recommended medical therapies and coronary revascularization strategies.
doi:10.5527/wjn.v1.i5.134
PMCID: PMC3782212  PMID: 24175251
Chronic kidney disease; Acute coronary syndromes; Non-ST-elevation myocardial infarction; ST-elevation myocardial infarction; Percutaneous coronary intervention; Renal insufficiency
4.  Impact of mannose-binding lectin deficiency on radiocontrast-induced renal dysfunction: a post-hoc analysis of a multicenter randomized controlled trial 
BMC Nephrology  2012;13:99.
Background
Local renal ischemia is regarded as an important factor in the development of contrast-induced nephropathy (CIN). Mannose-binding lectin (MBL) is involved in the tissue damage during experimental ischemia/reperfusion injury of the kidneys. The aim of the present study was to investigate the association of MBL deficiency with radiocontrast-induced renal dysfunction in a large prospective cohort.
Methods
246 patients with advanced non–dialysis-dependent renal dysfunction who underwent radiographic contrast procedures were included in the study. Baseline serum MBL levels were analyzed according to the occurrence of a creatinine-based (increase of ≥0.5 mg/dL or ≥25% within 48 hours) or cystatin C-based (increase of ≥10% within 24 hours) CIN.
Results
The incidence of creatinine-based and cystatin C-based CIN was 6.5% and 24%, respectively. MBL levels were not associated with the occurrence of creatinine-based CIN. However, patients that experienced a cystatin C increase of ≥10% showed significantly higher MBL levels than patients with a rise of <10% (median 2885 (IQR 1193–4471) vs. 1997 (IQR 439–3504)ng/mL, p = 0.01). In logistic regression analysis MBL deficiency (MBL levels≤500 ng/ml) was identified as an inverse predictor of a cystatin C increase ≥10% (OR 0.34, 95% CI 0.15-0.8, p = 0.01).
Conclusion
MBL deficiency was associated with a reduced radiocontrast-induced renal dysfunction as reflected by the course of cystatin C. Our findings support a possible role of MBL in the pathogenesis of CIN.
doi:10.1186/1471-2369-13-99
PMCID: PMC3471006  PMID: 22938690
Complement; Mannose-binding lectin; Contrast-induced nephropathy; Ischemia/reperfusion injury; Acute kidney injury
5.  An Intense and Short-Lasting Burst of Neutrophil Activation Differentiates Early Acute Myocardial Infarction from Systemic Inflammatory Syndromes 
PLoS ONE  2012;7(6):e39484.
Background
Neutrophils are involved in thrombus formation. We investigated whether specific features of neutrophil activation characterize patients with acute coronary syndromes (ACS) compared to stable angina and to systemic inflammatory diseases.
Methods and Findings
The myeloperoxidase (MPO) content of circulating neutrophils was determined by flow cytometry in 330 subjects: 69 consecutive patients with acute coronary syndromes (ACS), 69 with chronic stable angina (CSA), 50 with inflammation due to either non-infectious (acute bone fracture), infectious (sepsis) or autoimmune diseases (small and large vessel systemic vasculitis, rheumatoid arthritis). Four patients have also been studied before and after sterile acute injury of the myocardium (septal alcoholization). One hundred thirty-eight healthy donors were studied in parallel. Neutrophils with normal MPO content were 96% in controls, >92% in patients undergoing septal alcoholization, 91% in CSA patients, but only 35 and 30% in unstable angina and AMI (STEMI and NSTEMI) patients, compared to 80%, 75% and 2% of patients with giant cell arteritis, acute bone fracture and severe sepsis. In addition, in 32/33 STEMI and 9/21 NSTEMI patients respectively, 20% and 12% of neutrophils had complete MPO depletion during the first 4 hours after the onset of symptoms, a feature not observed in any other group of patients. MPO depletion was associated with platelet activation, indicated by P-selectin expression, activation and transactivation of leukocyte β2-integrins and formation of platelet neutrophil and -monocyte aggregates. The injection of activated platelets in mice produced transient, P-selectin dependent, complete MPO depletion in about 50% of neutrophils.
Conclusions
ACS are characterized by intense neutrophil activation, like other systemic inflammatory syndromes. In the very early phase of acute myocardial infarction only a subpopulation of neutrophils is massively activated, possibly via platelet-P selectin interactions. This paroxysmal activation could contribute to occlusive thrombosis.
doi:10.1371/journal.pone.0039484
PMCID: PMC3382567  PMID: 22761804
6.  Circulating microRNAs are new and sensitive biomarkers of myocardial infarction 
European Heart Journal  2010;31(22):2765-2773.
Aims
Circulating microRNAs (miRNAs) may represent a novel class of biomarkers; therefore, we examined whether acute myocardial infarction (MI) modulates miRNAs plasma levels in humans and mice.
Methods and results
Healthy donors (n = 17) and patients (n = 33) with acute ST-segment elevation MI (STEMI) were evaluated. In one cohort (n = 25), the first plasma sample was obtained 517 ± 309 min after the onset of MI symptoms and after coronary reperfusion with percutaneous coronary intervention (PCI); miR-1, -133a, -133b, and -499-5p were ∼15- to 140-fold control, whereas miR-122 and -375 were ∼87–90% lower than control; 5 days later, miR-1, -133a, -133b, -499-5p, and -375 were back to baseline, whereas miR-122 remained lower than control through Day 30. In additional patients (n = 8; four treated with thrombolysis and four with PCI), miRNAs and troponin I (TnI) were quantified simultaneously starting 156 ± 72 min after the onset of symptoms and at different times thereafter. Peak miR-1, -133a, and -133b expression and TnI level occurred at a similar time, whereas miR-499-5p exhibited a slower time course. In mice, miRNAs plasma levels and TnI were measured 15 min after coronary ligation and at different times thereafter. The behaviour of miR-1, -133a, -133b, and -499-5p was similar to STEMI patients; further, reciprocal changes in the expression levels of these miRNAs were found in cardiac tissue 3–6 h after coronary ligation. In contrast, miR-122 and -375 exhibited minor changes and no significant modulation. In mice with acute hind-limb ischaemia, there was no increase in the plasma level of the above miRNAs.
Conclusion
Acute MI up-regulated miR-1, -133a, -133b, and -499-5p plasma levels, both in humans and mice, whereas miR-122 and -375 were lower than control only in STEMI patients. These miRNAs represent novel biomarkers of cardiac damage.
doi:10.1093/eurheartj/ehq167
PMCID: PMC2980809  PMID: 20534597
Circulating miRNA; Myocardial infarction; miR-1; miR-133a; miR-133b; miR-499

Results 1-6 (6)