Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Joint effect of insulin signalling genes on cardiovascular events and on whole body and endothelial insulin resistance 
Atherosclerosis  2012;226(1):140-145.
Insulin resistance (IR) and cardiovascular disease (CVD) share a common soil. We investigated the combined role of single nucleotide polymorphisms (SNPs) affecting insulin signaling (ENPP1 K121Q, rs1044498; IRS1 G972R, rs1801278; TRIB3 Q84R, rs2295490) on CVD, age at myocardial infarction (MI), in vivo insulin sensitivity and in vitro insulin-stimulated nitric oxide synthase (NOS) activity.
Design and Setting
1. We first studied, incident cardiovascular events (a composite endpoint comprising myocardial infarction -MI-, stroke and cardiovascular death) in 733 patients (2,186 person-years, 175 events). 2. In a replication attempt, age at MI was tested in 331 individuals. 3. OGTT-derived insulin sensitivity index (ISI) was assessed in 829 individuals with fasting glucose < 126 mg/dl. 4. NOS activity was measured in 40 strains of human vein endothelial cells (HUVECs).
1. Risk variants jointly predicted cardiovascular events (HR=1.181; p=0.0009) and, when added to clinical risk factors, significantly improved survival C-statistics; they also allowed a significantly correct reclassification (by net reclassification index) in the whole sample (135/733 individuals) and, even more, in obese patients (116/204 individuals). 2. Risk variants were jointly associated with age at MI (p=0.006). 3. A significant association was also observed with ISI (p=0.02). 4. Finally, risk variants were jointly associated with insulin-stimulated NOS activity in HUVECs (p=0.009).
Insulin signaling genes variants jointly affect cardiovascular disease, very likely by promoting whole body and endothelium-specific insulin resistance. Further studies are needed to address whether their genotyping help identify very high-risk patients who need specific and/or more aggressive preventive strategies.
PMCID: PMC3529747  PMID: 23107043
genetic susceptibility; non synonymous polymorphism; insulin sensitivity; insulin dependent endothelial function
2.  Homoarginine and Mortality in Pre-Dialysis Chronic Kidney Disease (CKD) Patients 
PLoS ONE  2013;8(9):e72694.
Background and Aims
Homoarginine, a precursor of nitric oxide, is an inverse predictor of death in dialysis patients and in subjects with cardiovascular disease and normal kidney function but its relationship with clinical outcomes in chronic kidney disease (CKD) patients not yet on dialysis is unknown.
Design, setting, participants and measurements
We enrolled 168 consecutive predialysis CKD patients (Age: 70±11 yrs; 26% Diabetics; eGFR 34±18 ml/min/1.73 m2) referred to a tertiary care centre and measured laboratory data on kidney function and cardiovascular risk factors. We modeled progression to dialysis or death as a function of homoarginine, using Cox’s regression, accounting for clinical characteristics, baseline levels of kidney function, and markers of inflammation.
On crude and adjusted analyses homoarginine was directly associated with the eGFR and patients with more compromised renal function exhibited lower homoarginine levels. Furthermore homoarginine was also independently related to L-arginine, serum albumin and body mass index, and inversely related to proteinuria, C-reactive protein and age. During the study (follow up median time 4 years, inter-quartile range 1.7 to 7.0 years) 56 patients started dialysis and 103 died and homoarginine was a strong inverse predictor of the incidence rate of both outcomes (P = 0.002 and P = 0.017).
Homoarginine declines with advancing renal disease and is inversely related to progression to dialysis and mortality. The nature of the link between homoarginine and clinical outcomes is amenable to testing in clinical trials.
PMCID: PMC3762798  PMID: 24023762
3.  Pro-inflammatory cytokines and bone fractures in CKD patients. An exploratory single centre study 
BMC Nephrology  2012;13:134.
Pro-inflammatory cytokines play a key role in bone remodeling. Inflammation is highly prevalent in CKD-5D patients, but the relationship between pro-inflammatory cytokines and fractures in CKD-5D patients is unclear. We studied the relationship between inflammatory cytokines and incident bone fractures in a cohort of CKD-5D patients.
In 100 CKD-5D patients (66 on HD, 34 on CAPD; males:63, females:37; mean age: 61 ± 15; median dialysis vintage: 43 months) belonging to a single renal Unit, we measured at enrolment bone metabolic parameters (intact PTH, bone and total alkaline phosphatase, calcium, phosphate) and inflammatory cytokines (TNF-α, IL-6, CRP). Patients were followed-up until the first non traumatic fracture.
During follow-up (median: 74 months; range 0.5 -84.0) 18 patients experienced fractures. On categorical analysis these patients compared to those without fractures had significantly higher intact PTH (median: 319 pg/ml IQ range: 95–741 vs 135 pg/ml IQ: 53–346; p = 0.04) and TNF-α levels (median: 12 pg/ml IQ: 6.4-13.4 vs 7.8 pg/ml IQ: 4.6-11; p = 0.02). Both TNF-α (HR for 5 pg/ml increase in TNF-α: 1.62 95% CI: 1.05-2.50; p = 0.03) and intact PTH (HR for 100 pg/ml increase in PTH: 1.15 95% CI: 1.04-1.27; p = 0.005) predicted bone fractures on univariate Cox’s regression analysis. In restricted (bivariate) models adjusting for previous fractures, age, sex and other risk factors both PTH and TNF-α maintained an independent association with incident fractures.
In our bivariate analyses TNF-α was significantly associated with incident fractures. Analyses in larger cohorts and with adequate number of events are needed to firmly establish the TNF α -fracture link emerged in the present study.
PMCID: PMC3472278  PMID: 23043229
Bone fractures; CKD; Dialysis; Hyperparathyroidism; TNF-alpha; Inflammation
4.  The ENPP1 Q121 Variant Predicts Major Cardiovascular Events in High-Risk Individuals 
Diabetes  2011;60(3):1000-1007.
Insulin resistance (IR) and cardiovascular disease may share a common genetic background. We investigated the role of IR-associated ENPP1 K121Q polymorphism (rs1044498) on cardiovascular disease in high-risk individuals.
A prospective study (average follow-up, 37 months) was conducted for major cardiovascular events (myocardial infarction [MI], stroke, cardiovascular death) from the Gargano Heart Study (GHS; n = 330 with type 2 diabetes and coronary artery disease), the Tor Vergata Atherosclerosis Study (TVAS; n = 141 who had MI), and the Cardiovascular Risk Extended Evaluation in Dialysis (CREED) database (n = 266 with end-stage renal disease). Age at MI was investigated in cross-sectional studies of 339 type 2 diabetic patients (n = 169 from Italy, n = 170 from the U.S.).
Incidence of cardiovascular events per 100 person--years was 4.2 in GHS, 10.8 in TVAS, and 11.7 in CREED. Hazard ratios (HRs) for KQ+QQ versus individuals carrying the K121/K121 genotype (KK) individuals were 1.47 (95% CI 0.80–2.70) in GHS, 2.31 (95% CI 1.22–4.34) in TVAS, and 1.36 (95% CI 0.88–2.10) in CREED, and 1.56 (95% CI 1.15–2.12) in the three cohorts combined. In the 395 diabetic patients, the Q121 variant predicted cardiovascular events among obese but not among nonobese individuals (HR 5.94 vs. 0.62, P = 0.003 for interaction). A similar synergism was observed in cross-sectional studies, with age at MI being 3 years younger in Q121 carriers than in KK homozygotes among obese but not among nonobese patients (P = 0.035 for interaction).
The ENPP1 K121Q polymorphism is an independent predictor of major cardiovascular events in high-risk individuals. In type 2 diabetes, this effect is exacerbated by obesity. Future larger studies are needed to confirm our finding.
PMCID: PMC3046818  PMID: 21282363

Results 1-4 (4)