PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Exploring haemodynamics of haemodialysis using extrema points analysis model 
Background
Haemodialysis is a form of renal replacement therapy used to treat patients with end stage renal failure. It is becoming more appreciated that haemodialysis patients exhibit higher rates of multiple end organ damage compared to the general population. There is also a strong emerging evidence that haemodialysis itself causes circulatory stress. We aimed at examining haemodynamic patterns during haemodialysis using a new model and test that model against a normal control.
Methods
We hypothesised that blood pressures generated by each heart beat constantly vary between local peaks and troughs (local extrema), the frequency and amplitude of which is regulated to maintain optimal organ perfusion. We also hypothesised that such model could reveal multiple haemodynamic aberrations during HD. Using a non-invasive cardiac output monitoring device (Finometer®) we compared various haemodynamic parameters using the above model between a haemodialysis patient during a dialysis session and an exercised normal control after comparison at rest.
Results
Measurements yielded 29,751 data points for each haemodynamic parameter. Extrema points frequency of mean arterial blood pressure was higher in the HD subject compared to the normal control (0.761Hz IQR 0.5-0.818 vs 0.468Hz IQR 0.223-0.872, P < 0.0001). Similarly, extrema points frequency of systolic blood pressure was significantly higher in haemodialysis compared to normal. In contrary, the frequency of extrema points for TPR was higher in the normal control compared to HD (0.947 IQR 0.520-1.512 vs 0.845 IQR 0.730-1.569, P < 0.0001) with significantly higher amplitudes.
Conclusion
Haemodialysis patients potentially exhibit an aberrant haemodynamic behaviour characterised by higher extrema frequencies of mean arterial blood pressure and lower extrema frequencies of total peripheral resistance. This, in theory, could lead to higher variation in organ perfusion and may be detrimental to vulnerable vascular beds.
doi:10.1186/1742-4682-10-33
PMCID: PMC3664078  PMID: 23680293
Extrema; Bloods pressure; Total peripheral resistance; Haemodialysis
2.  Rationale and design of a multi-centre randomised controlled trial of individualised cooled dialysate to prevent left ventricular systolic dysfunction in haemodialysis patients 
BMC Nephrology  2012;13:45.
Background
The main hypothesis of this study is that patients having regular conventional haemodialysis (HD) will have a smaller decline in cardiac systolic function by using cooler dialysate. Cooler dialysate may also be beneficial for brain function.
Methods/Design
The trial is a multicentre, prospective, randomised, un-blinded, controlled trial. Patients will be randomised 1:1 to use a dialysate temperature of 37°C for 12 months or an individualised cooled dialysate. The latter will be set at 0.5°C less than the patient’s own temperature, determined from the mean of 6 prior treatment sessions with a tympanic thermometer, up to a maximum of 36°C. Protocol adherence will be regularly checked. Inclusion criteria are incident adult HD patients within 180 days of commencing in-centre treatment 3 times per week with capacity to consent for the trial and without contra-indications for magnetic resonance imaging. Exclusion criteria include not meeting inclusion criteria, inability to tolerate magnetic resonance imaging and New York Heart Association Grade IV heart failure. During the study period, resting cardiac and cerebral magnetic resonance imaging will be performed at baseline and 12 months on an inter-dialytic day. Cardiovascular performance during HD will also be assessed by continuous cardiac output monitors, intra-dialytic echocardiography and biomarkers at baseline and 12 months. The primary outcome measure is a 5% between-group difference in left ventricular ejection fraction measured by cardiac magnetic resonance imaging at 12 months compared to baseline. Analysis will be by intention-to-treat. Secondary outcome measures will include changes in cerebral microstructure and changes in cardiovascular performance during HD. A total of 73 patients have been recruited into the trial from four UK centres. The trial is funded by a Research for Patient Benefit Grant from the National Institute of Healthcare Research. AO is funded by a British Heart Foundation Clinical Research Training Fellowship Grant. The funders had no role in the design of the study.
Discussion
This investigator-initiated study has been designed to provide evidence to help nephrologists determine the optimal dialysate temperature for preserving cardiac and cerebral function in HD patients.
Trial registration
ISRCTN00206012 and UKCRN ID 7422
doi:10.1186/1471-2369-13-45
PMCID: PMC3444357  PMID: 22720738
Magnetic resonance imaging; Dialysate; Haemodialysis; Left ventricular dysfunction; Randomised controlled trial

Results 1-2 (2)