PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Biophysical features of MagA expression in mammalian cells: implications for MRI contrast 
We compared overexpression of the magnetotactic bacterial gene MagA with the modified mammalian ferritin genes HF + LF, in which both heavy and light subunits lack iron response elements. Whereas both expression systems have been proposed for use in non-invasive, magnetic resonance (MR) reporter gene expression, limited information is available regarding their relative potential for providing gene-based contrast. Measurements of MR relaxation rates in these expression systems are important for optimizing cell detection and specificity, for developing quantification methods, and for refinement of gene-based iron contrast using magnetosome associated genes. We measured the total transverse relaxation rate (R2*), its irreversible and reversible components (R2 and R2′, respectively) and the longitudinal relaxation rate (R1) in MDA-MB-435 tumor cells. Clonal lines overexpressing MagA and HF + LF were cultured in the presence and absence of iron supplementation, and mounted in a spherical phantom for relaxation mapping at 3 Tesla. In addition to MR measures, cellular changes in iron and zinc were evaluated by inductively coupled plasma mass spectrometry, in ATP by luciferase bioluminescence and in transferrin receptor by Western blot. Only transverse relaxation rates were significantly higher in iron-supplemented, MagA- and HF + LF-expressing cells compared to non-supplemented cells and the parental control. R2* provided the greatest absolute difference and R2′ showed the greatest relative difference, consistent with the notion that R2′ may be a more specific indicator of iron-based contrast than R2, as observed in brain tissue. Iron supplementation of MagA- and HF + LF-expressing cells increased the iron/zinc ratio approximately 20-fold, while transferrin receptor expression decreased approximately 10-fold. Level of ATP was similar across all cell types and culture conditions. These results highlight the potential of magnetotactic bacterial gene expression for improving MR contrast.
doi:10.3389/fmicb.2014.00029
PMCID: PMC3913841  PMID: 24550900
magnetic resonance imaging; MagA; modified ferritin subunits; relaxation rates; iron; cancer cells
3.  MRI-identified abnormalities and wrist range of motion in asymptomatic versus symptomatic computer users 
Background
Previous work has shown an association between restricted wrist range of motion (ROM) and upper extremity musculoskeletal disorders in computer users. We compared the prevalence of MRI-identified wrist abnormalities and wrist ROM between asymptomatic and symptomatic computer users.
Methods
MR images at 1.5 T of both wrists were obtained from 10 asymptomatic controls (8 F, 2 M) and 14 computer users (10 F, 4 M) with chronic wrist pain (10 bilateral; 4 right-side). Maximum wrist range of motion in flexion and radioulnar deviation was measured with an electrogoniometer.
Results
Extraosseous ganglia were identified in 66.6% of asymptomatic wrists and in 75% of symptomatic wrists. Intraosseous ganglia were identified in 45.8% of asymptomatic wrists and in 75% of symptomatic wrists, and were significantly (p < .05) larger in the symptomatic wrists. Distal ECU tendon instability was identified in 58.4% of both asymptomatic and symptomatic wrists. Dominant wrist flexion was significantly greater in the asymptomatic group (68.8 ± 6.7 deg.) compared to the symptomatic group (60.7 ± 7.3 deg.), p < .01. There was no significant correlation between wrist flexion and intraosseous ganglion burden (p = .09)
Conclusions
This appears to be the first MRI study of wrist abnormalities in computer users.
This study demonstrates that a variety of wrist abnormalities are common in computer users and that only intraosseous ganglia prevalence and size differed between asymptomatic and symptomatic wrists. Flexion was restricted in the dominant wrist of the symptomatic group, but the correlation between wrist flexion and intraosseous ganglion burden did not reach significance. Flexion restriction may be an indicator of increased joint loading, and identifying the cause may help to guide preventive and therapeutic interventions.
doi:10.1186/1471-2474-11-273
PMCID: PMC2998464  PMID: 21108817
4.  The effect of forearm posture on wrist flexion in computer workers with chronic upper extremity musculoskeletal disorders 
Background
Occupational computer use has been associated with upper extremity musculoskeletal disorders (UEMSDs), but the etiology and pathophysiology of some of these disorders are poorly understood. Various theories attribute the symptoms to biomechanical and/or psychosocial stressors. The results of several clinical studies suggest that elevated antagonist muscle tension may be a biomechanical stress factor. Affected computer users often exhibit limited wrist range of motion, particularly wrist flexion, which has been attributed to increased extensor muscle tension, rather than to pain symptoms. Recreational or domestic activities requiring extremes of wrist flexion may produce injurious stress on the wrist joint and muscles, the symptoms of which are then exacerbated by computer use. As these activities may involve a variety of forearm postures, we examined whether changes in forearm posture have an effect on pain reports during wrist flexion, or whether pain would have a limiting effect on flexion angle.
Methods
We measured maximum active wrist flexion using a goniometer with the forearm supported in the prone, neutral, and supine postures. Data was obtained from 5 subjects with UEMSDs attributed to computer use and from 13 control subjects.
Results
The UEMSD group exhibited significantly restricted wrist flexion compared to the control group in both wrists at all forearm postures with the exception of the non-dominant wrist with the forearm prone. In both groups, maximum active wrist flexion decreased at the supine forearm posture compared to the prone posture. No UEMSD subjects reported an increase in pain symptoms during testing.
Conclusion
The UEMSD group exhibited reduced wrist flexion compared to controls that did not appear to be pain related. A supine forearm posture reduced wrist flexion in both groups, but the reduction was approximately 100% greater in the UEMSD group. The effect of a supine forearm posture on wrist flexion is consistent with known biomechanical changes in the distal extensor carpi ulnaris tendon that occur with forearm supination. We infer from these results that wrist extensor muscle passive tension may be elevated in UEMSD subjects compared to controls, particularly in the extensor carpi ulnaris muscle. Measuring wrist flexion at the supine forearm posture may highlight flexion restrictions that are not otherwise apparent.
doi:10.1186/1471-2474-9-47
PMCID: PMC2362125  PMID: 18405370

Results 1-4 (4)