PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-8 (8)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Biomechanical risk factors for carpal tunnel syndrome: a pooled study of 2474 workers 
Background
Between 2001 and 2010, five research groups conducted coordinated prospective studies of carpal tunnel syndrome (CTS) incidence among US workers from various industries and collected detailed subject-level exposure information with follow-up of symptoms, electrophysiological measures and job changes.
Objective
This analysis examined the associations between workplace biomechanical factors and incidence of dominant-hand CTS, adjusting for personal risk factors.
Methods
2474 participants, without CTS or possible polyneuropathy at enrolment, were followed up to 6.5 years (5102 person-years). Individual workplace exposure measures of the dominant hand were collected for each task and included force, repetition, duty cycle and posture. Task exposures were combined across the workweek using time-weighted averaging to estimate job-level exposures. CTS case-criteria were based on symptoms and results of electrophysiological testing. HRs were estimated using Cox proportional hazard models.
Results
After adjustment for covariates, analyst (HR=2.17; 95% CI 1.38 to 3.43) and worker (HR=2.08; 95% CI 1.31 to 3.39) estimated peak hand force, forceful repetition rate (HR=1.84; 95% CI 1.19 to 2.86) and per cent time spent (eg, duty cycle) in forceful hand exertions (HR=2.05; 95% CI 1.34 to 3.15) were associated with increased risk of incident CTS. Associations were not observed between total hand repetition rate, per cent duration of all hand exertions, or wrist posture and incident CTS.
Conclusions
In this prospective multicentre study of production and service workers, measures of exposure to forceful hand exertion were associated with incident CTS after controlling for important covariates. These findings may influence the design of workplace safety programmes for preventing work-related CTS.
doi:10.1136/oemed-2014-102378
PMCID: PMC4270859  PMID: 25324489
2.  Prevalence of low back pain by anatomic location and intensity in an occupational population 
Background
Low Back Pain (LBP) is a common and costly problem, with variation in prevalence. Epidemiological reports of rating of pain intensity and location within the low back area are rare. The objective is to describe LBP in a large, multi-center, occupational cohort detailing both point and 1-month period prevalence of LBP by location and intensity measures at baseline.
Methods
In this cross-sectional report from a prospective cohort study, 828 participants were workers enrolled from 30 facilities performing a variety of manual material handling tasks. All participants underwent a structured interview detailing pain rating and location. Symptoms in the lower extremities, demographic and other data were collected. Body mass indices were measured. Outcomes are pain rating (0–10) in five defined lumbar back areas (i) LBP in the past month and (ii) LBP on the day of enrollment. Pain ratings were reported on a 0–10 scale and subsequently collapsed with ratings of 1–3, 4–6 and 7–10 classified as low, medium and high respectively.
Results
172 (20.8%) and 364 (44.0%) of the 828 participants reported pain on the day of enrollment or within the past month, respectively. The most common area of LBP was in the immediate paraspinal area with 130 (75.6%) participants with point prevalence LBP and 278 (77.4%) with 1-month period prevalence reported having LBP in the immediate paraspinal area. Among those 364 reporting 1-month period prevalence pain, ratings varied widely with 116 (31.9%) reporting ratings classified as low, 170 (46.7%) medium and 78 (21.4%) providing high pain ratings in any location. Among the 278 reporting 1-month period prevalence pain in the immediate paraspinal area, 89 (32.0%) reported ratings classified as low, 129 (46.4%), medium and 60 (21.6%) high pain ratings.
Conclusions
Pain ratings varied widely, however less variability was seen in pain location, with immediate paraspinal region being the most common. Variations may suggest different etiological factors related to LBP. Aggregation of different locations of pain or different intensities of pain into one binary classification of LBP may result in loss of information which may potentially be useful in prevention or treatment of LBP.
doi:10.1186/1471-2474-15-283
PMCID: PMC4153910  PMID: 25146722
Low back pain; Point prevalence; 1-month period prevalence; Intensity; Location; Epidemiological; Cross-sectional analysis
3.  Observational and interventional study design types; an overview 
Biochemia Medica  2014;24(2):199-210.
The appropriate choice in study design is essential for the successful execution of biomedical and public health research. There are many study designs to choose from within two broad categories of observational and interventional studies. Each design has its own strengths and weaknesses, and the need to understand these limitations is necessary to arrive at correct study conclusions.
Observational study designs, also called epidemiologic study designs, are often retrospective and are used to assess potential causation in exposure-outcome relationships and therefore influence preventive methods. Observational study designs include ecological designs, cross sectional, case-control, case-crossover, retrospective and prospective cohorts. An important subset of observational studies is diagnostic study designs, which evaluate the accuracy of diagnostic procedures and tests as compared to other diagnostic measures. These include diagnostic accuracy designs, diagnostic cohort designs, and diagnostic randomized controlled trials.
Interventional studies are often prospective and are specifically tailored to evaluate direct impacts of treatment or preventive measures on disease. Each study design has specific outcome measures that rely on the type and quality of data utilized. Additionally, each study design has potential limitations that are more severe and need to be addressed in the design phase of the study. This manuscript is meant to provide an overview of study design types, strengths and weaknesses of common observational and interventional study designs.
doi:10.11613/BM.2014.022
PMCID: PMC4083571  PMID: 24969913
study design; epidemiology; observational study; randomized trials; study strengths and weaknesses
4.  Prevalence and incidence of carpal tunnel syndrome in US working populations: pooled analysis of six prospective studies 
Objectives
Most studies of carpal tunnel syndrome (CTS) incidence and prevalence among workers have been limited by small sample sizes or restricted to a small subset of jobs. We established a common CTS case definition and then pooled CTS prevalence and incidence data across six prospective studies of musculoskeletal outcomes to measure CTS frequency and allow better studies of etiology.
Methods
Six research groups collected prospective data at >50 workplaces including symptoms characteristic of CTS and electrodiagnostic studies (EDS) of the median and ulnar nerves across the dominant wrist. While study designs and the timing of data collection varied across groups, we were able to create a common CTS case definition incorporating both symptoms and EDS results from data that were collected in all studies.
Results
At the time of enrollment, 7.8% of 4321 subjects met our case definition and were considered prevalent cases of CTS. During 8833 person-years of follow-up, an additional 204 subjects met the CTS case definition for an overall incidence rate of 2.3 CTS cases per 100 person-years.
Conclusions
Both prevalent and incident CTS were common in data pooled across multiple studies and sites. The large number of incident cases in this prospective study provides adequate power for future exposure– response analyses to identify work- and non-work-related risk factors for CTS. The prospective nature allows determination of the temporal relations necessary for causal inference.
doi:10.5271/sjweh.3351
PMCID: PMC4042862  PMID: 23423472
CTS; epidemiology; industry; longitudinal study; median nerve; MSD; musculoskeletal disorder; nerve compression; occupational injury; surveillance; work-related injury
5.  Electrical stimulation for chronic non-specific low back pain in a working-age population: a 12-week double blinded randomized controlled trial 
Background
Non-invasive electrotherapy is commonly used for treatment of chronic low back pain. Evidence for efficacy of most electrotherapy modalities is weak or lacking. This study aims to execute a high-quality, double-blinded randomized controlled clinical trial comparing 1) H-Wave® Device stimulation plus usual care with 2) transcutaneous electrical nerve stimulation (TENS) plus usual care, and 3) Sham electrotherapy plus usual care to determine comparative efficacy for treatment of chronic non-specific low back pain patients.
Methods/Design
Patients- Chronic non-specific low back pain patients between ages of 18–65 years, with pain of at least 3 months duration and minimal current 5/10 VAS pain. Patients will have no significant signs or symptoms of lumbosacral nerve impingement, malignancy, spinal stenosis, or mood disorders.
Study design- Double blind RCT with 3 arms and 38 subjects per arm. Randomization by permuted blocks of random length, stratified by Workers Compensation claim (yes vs. no), and use of opioids. The null hypothesis of this study is that there are no statistically significant differences in functional improvement between treatment types during and at the end of a 12-week week treatment period.
Data collection- Subjective data will be collected using Filemaker Pro™ database management collection tools. Objective data will be obtained through functional assessments. Data will be collected at enrollment and at 1, 4, 8, and 12 weeks for each participant by a blinded assessor.
Interventions- H-Wave® device stimulation (Intervention A) plus usual care, transcutaneous electrical nerve stimulation (TENS) (Intervention B) plus usual care, and sham electrotherapy plus usual care (control). Each treatment arm will have identical numbers of visits (4) and researcher contact time (approximately 15 hours).
Outcomes- Primary outcome measure: Oswestry Disability Index. Secondary measures include: Rowland Morris Instrument, VAS pain score, functional evaluation including strength when pushing and pulling, pain free range of motion in flexion and extension. Outcome measures assessed at baseline, 1, 4, 8, and 12 weeks. Treatment failure will be defined if patient terminates assigned treatment arm for non-efficacy or undergoes invasive procedure or other excluded cointerventions. Data will be analyzed using intention-to-treat analysis and adjusted for covariates related to LBP (e.g. age) as needed.
Discussion
Study strengths include complex randomization, treatment group allocation concealment, double blinding, controlling for co-interventions, rigorous inclusion criteria, assessment of compliance, plans for limiting dropout, identical assessment methods and timing for each treatment arm, and planned intention-to-treat analyses.
doi:10.1186/1471-2474-14-117
PMCID: PMC3626857  PMID: 23537462
Chronic low back pain; Transcutaneous electrical nerve stimulation; Double-blind randomized controlled trial; H-wave; TENS; Usual care
6.  Study protocol title: a prospective cohort study of low back pain 
Background
Few prospective cohort studies of workplace low back pain (LBP) with quantified job physical exposure have been performed. There are few prospective epidemiological studies for LBP occupational risk factors and reported data generally have few adjustments for many personal and psychosocial factors.
Methods/design
A multi-center prospective cohort study has been incepted to quantify risk factors for LBP and potentially develop improved methods for designing and analyzing jobs. Due to the subjectivity of LBP, six measures of LBP are captured: 1) any LBP, 2) LBP ≥ 5/10 pain rating, 3) LBP with medication use, 4) LBP with healthcare provider visits, 5) LBP necessitating modified work duties and 6) LBP with lost work time. Workers have thus far been enrolled from 30 different employment settings in 4 diverse US states and performed widely varying work. At baseline, workers undergo laptop-administered questionnaires, structured interviews, and two standardized physical examinations to ascertain demographics, medical history, psychosocial factors, hobbies and physical activities, and current musculoskeletal disorders. All workers’ jobs are individually measured for physical factors and are videotaped. Workers are followed monthly for the development of low back pain. Changes in jobs necessitate re-measure and re-videotaping of job physical factors. The lifetime cumulative incidence of low back pain will also include those with a past history of low back pain. Incident cases will exclude prevalent cases at baseline. Statistical methods planned include survival analyses and logistic regression.
Discussion
Data analysis of a prospective cohort study of low back pain is underway and has successfully enrolled over 800 workers to date.
doi:10.1186/1471-2474-14-84
PMCID: PMC3599364  PMID: 23497211
Epidemiology; Ergonomics; Cohort; Low back pain; NIOSH lifting equation
7.  The WISTAH hand study: A prospective cohort study of distal upper extremity musculoskeletal disorders 
Background
Few prospective cohort studies of distal upper extremity musculoskeletal disorders have been performed. Past studies have provided somewhat conflicting evidence for occupational risk factors and have largely reported data without adjustments for many personal and psychosocial factors.
Methods/design
A multi-center prospective cohort study was incepted to quantify risk factors for distal upper extremity musculoskeletal disorders and potentially develop improved methods for analyzing jobs. Disorders to analyze included carpal tunnel syndrome, lateral epicondylalgia, medial epicondylalgia, trigger digit, deQuervain’s stenosing tenosynovitis and other tendinoses. Workers have thus far been enrolled from 17 different employment settings in 3 diverse US states and performed widely varying work. At baseline, workers undergo laptop administered questionnaires, structured interviews, two standardized physical examinations and nerve conduction studies to ascertain demographic, medical history, psychosocial factors and current musculoskeletal disorders. All workers’ jobs are individually measured for physical factors and are videotaped. Workers are followed monthly for the development of musculoskeletal disorders. Repeat nerve conduction studies are performed for those with symptoms of tingling and numbness in the prior six months. Changes in jobs necessitate re-measure and re-videotaping of job physical factors. Case definitions have been established. Point prevalence of carpal tunnel syndrome is a combination of paraesthesias in at least two median nerve-served digits plus an abnormal nerve conduction study at baseline. The lifetime cumulative incidence of carpal tunnel syndrome will also include those with a past history of carpal tunnel syndrome. Incident cases will exclude those with either a past history or prevalent cases at baseline. Statistical methods planned include survival analyses and logistic regression.
Discussion
A prospective cohort study of distal upper extremity musculoskeletal disorders is underway and has successfully enrolled over 1,000 workers to date.
doi:10.1186/1471-2474-13-90
PMCID: PMC3476983  PMID: 22672216
Epidemiology; Ergonomics; Cohort; Carpal tunnel syndrome; Strain index; TLV for HAL
8.  Biomechanical risk factors for carpal tunnel syndrome: a pooled study of 2474 workers 
Background
Between 2001 and 2010, five research groups conducted coordinated prospective studies of carpal tunnel syndrome (CTS) incidence among US workers from various industries and collected detailed subject-level exposure information with follow-up of symptoms, electrophysiological measures and job changes.
Objective
This analysis examined the associations between workplace biomechanical factors and incidence of dominant-hand CTS, adjusting for personal risk factors.
Methods
2474 participants, without CTS or possible polyneuropathy at enrolment, were followed up to 6.5 years (5102 person-years). Individual workplace exposure measures of the dominant hand were collected for each task and included force, repetition, duty cycle and posture. Task exposures were combined across the workweek using time-weighted averaging to estimate job-level exposures. CTS case-criteria were based on symptoms and results of electrophysiological testing. HRs were estimated using Cox proportional hazard models.
Results
After adjustment for covariates, analyst (HR=2.17; 95% CI 1.38 to 3.43) and worker (HR=2.08; 95% CI 1.31 to 3.39) estimated peak hand force, forceful repetition rate (HR=1.84; 95% CI 1.19 to 2.86) and per cent time spent (eg, duty cycle) in forceful hand exertions (HR=2.05; 95% CI 1.34 to 3.15) were associated with increased risk of incident CTS. Associations were not observed between total hand repetition rate, per cent duration of all hand exertions, or wrist posture and incident CTS.
Conclusions
In this prospective multicentre study of production and service workers, measures of exposure to forceful hand exertion were associated with incident CTS after controlling for important covariates. These findings may influence the design of workplace safety programmes for preventing work-related CTS.
doi:10.1136/oemed-2014-102378
PMCID: PMC4270859  PMID: 25324489
entrapment neuropathy; prospective; upper extremity; physical exposure

Results 1-8 (8)