Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Modified ‘one amino acid-one codon’ engineering of high GC content TaqII-coding gene from thermophilic Thermus aquaticus results in radical expression increase 
An industrial approach to protein production demands maximization of cloned gene expression, balanced with the recombinant host’s viability. Expression of toxic genes from thermophiles poses particular difficulties due to high GC content, mRNA secondary structures, rare codon usage and impairing the host’s coding plasmid replication.
TaqII belongs to a family of bifunctional enzymes, which are a fusion of the restriction endonuclease (REase) and methyltransferase (MTase) activities in a single polypeptide. The family contains thermostable REases with distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI and a few enzymes found in mesophiles. While not being isoschizomers, the enzymes exhibit amino acid (aa) sequence homologies, having molecular sizes of ~120 kDa share common modular architecture, resemble Type-I enzymes, cleave DNA 11/9 nt from the recognition sites, their activity is affected by S-adenosylmethionine (SAM).
We describe the taqIIRM gene design, cloning and expression of the prototype TaqII. The enzyme amount in natural hosts is extremely low. To improve expression of the taqIIRM gene in Escherichia coli (E. coli), we designed and cloned a fully synthetic, low GC content, low mRNA secondary structure taqIIRM, codon-optimized gene under a bacteriophage lambda (λ) P R promoter. Codon usage based on a modified ‘one amino acid–one codon’ strategy, weighted towards low GC content codons, resulted in approximately 10-fold higher expression of the synthetic gene. 718 codons of total 1105 were changed, comprising 65% of the taqIIRM gene. The reason for we choose a less effective strategy rather than a resulting in high expression yields ‘codon randomization’ strategy, was intentional, sub-optimal TaqII in vivo production, in order to decrease the high ‘toxicity’ of the REase-MTase protein.
Recombinant wt and synthetic taqIIRM gene were cloned and expressed in E. coli. The modified ‘one amino acid–one codon’ method tuned for thermophile-coded genes was applied to obtain overexpression of the ‘toxic’ taqIIRM gene. The method appears suited for industrial production of thermostable ‘toxic’ enzymes in E. coli. This novel variant of the method biased toward increasing a gene’s AT content may provide economic benefits for industrial applications.
PMCID: PMC3893498  PMID: 24410856
2.  A new genomic tool, ultra-frequently cleaving TaqII/sinefungin endonuclease with a combined 2.9-bp recognition site, applied to the construction of horse DNA libraries 
BMC Genomics  2013;14:370.
Genomics and metagenomics are currently leading research areas, with DNA sequences accumulating at an exponential rate. Although enormous advances in DNA sequencing technologies are taking place, progress is frequently limited by factors such as genomic contig assembly and generation of representative libraries. A number of DNA fragmentation methods, such as hydrodynamic sharing, sonication or DNase I fragmentation, have various drawbacks, including DNA damage, poor fragmentation control, irreproducibility and non-overlapping DNA segment representation. Improvements in these limited DNA scission methods are consequently needed. An alternative method for obtaining higher quality DNA fragments involves partial digestion with restriction endonucleases (REases).
We have shown previously that class-IIS/IIC/IIG TspGWI REase, the prototype member of the Thermus sp. enzyme family, can be chemically relaxed by a cofactor analogue, allowing it to recognize very short DNA sequences of 3-bp combined frequency. Such frequently cleaving REases are extremely rare, with CviJI/CviJI*, SetI and FaiI the only other ones found in nature. Their unusual features make them very useful molecular tools for the development of representative DNA libraries.
We constructed a horse genomic library and a deletion derivative library of the butyrylcholinesterase cDNA coding region using a novel method, based on TaqII, Thermus sp. family bifunctional enzyme exhibiting cofactor analogue specificity relaxation. We used sinefungin (SIN) – an S-adenosylmethionine (SAM) analogue with reversed charge pattern, and dimethylsulfoxide (DMSO), to convert the 6-bp recognition site TaqII (5′-GACCGA-3′ [11/9]) into a theoretical 2.9-bp REase, with 70 shortened variants of the canonical recognition sequence detected. Because partial DNA cleavage is an inherent feature of the Thermus sp. enzyme family, this modified TaqII is uniquely suited to quasi-random library generation.
In the presence of SIN/DMSO, TaqII REase is transformed from cleaving every 4096 bp on average to cleaving every 58 bp. TaqII SIN/DMSO thus extends the palette of available REase prototype specificities. This phenomenon, employed under partial digestion conditions, was applied to quasi-random DNA fragmentation. Further applications include high sensitivity probe generation and metagenomic DNA amplification.
PMCID: PMC3681635  PMID: 23724933
3.  Related bifunctional restriction endonuclease-methyltransferase triplets: TspDTI, Tth111II/TthHB27I and TsoI with distinct specificities 
BMC Molecular Biology  2012;13:13.
We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S-adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI.
TspDTI, TsoI and isoschizomers Tth111II/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', 5'-TARCCA-3' and 5'-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases.
TspDTI, TsoI and isoschizomers Tth111II/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, TaqII and MmeI, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.
PMCID: PMC3384240  PMID: 22489904

Results 1-3 (3)