PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-21 (21)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Differential Requirement for SUB1 in Chromosomal and Plasmid Double-Strand DNA Break Repair 
PLoS ONE  2013;8(3):e58015.
Non homologous end joining (NHEJ) is an important process that repairs double strand DNA breaks (DSBs) in eukaryotic cells. Cells defective in NHEJ are unable to join chromosomal breaks. Two different NHEJ assays are typically used to determine the efficiency of NHEJ. One requires NHEJ of linearized plasmid DNA transformed into the test organism; the other requires NHEJ of a single chromosomal break induced either by HO endonuclease or the I-SceI restriction enzyme. These two assays are generally considered equivalent and rely on the same set of NHEJ genes. PC4 is an abundant DNA binding protein that has been suggested to stimulate NHEJ. Here we tested the role of PC4's yeast homolog SUB1 in repair of DNA double strand breaks using different assays. We found SUB1 is required for NHEJ repair of DSBs in plasmid DNA, but not in chromosomal DNA. Our results suggest that these two assays, while similar are not equivalent and that repair of plasmid DNA requires additional factor(s) that are not required for NHEJ repair of chromosomal double-strand DNA breaks. Possible roles for Sub1 proteins in NHEJ of plasmid DNA are discussed.
doi:10.1371/journal.pone.0058015
PMCID: PMC3595253  PMID: 23554872
2.  UV damage regulates alternative polyadenylation of the RPB2 gene in yeast 
Nucleic Acids Research  2013;41(5):3104-3114.
Alternative polyadenylation (APA) is conserved in all eukaryotic cells. Selective use of polyadenylation sites appears to be a highly regulated process and contributes to human pathogenesis. In this article we report that the yeast RPB2 gene is alternatively polyadenylated, producing two mRNAs with different lengths of 3′UTR. In normally growing wild-type cells, polyadenylation preferentially uses the promoter-proximal poly(A) site. After UV damage transcription of RPB2 is initially inhibited. As transcription recovers, the promoter-distal poly(A) site is preferentially used instead, producing more of a longer form of RPB2 mRNA. We show that the relative increase in the long RPB2 mRNA is not caused by increased mRNA stability, supporting the preferential usage of the distal poly(A) site during transcription recovery. We demonstrate that the 3′UTR of RPB2 is sufficient for this UV-induced regulation of APA. We present evidence that while transcription initiation rates do not seem to influence selection of the poly(A) sites of RPB2, the rate of transcription elongation is an important determinant.
doi:10.1093/nar/gkt020
PMCID: PMC3597686  PMID: 23355614
3.  Preferential DNA damage prevention by the E. coli AidB gene: a new mechanism for protection of specific genes 
DNA repair  2011;10(9):934-941.
aidB is one of four genes of E. coli that is induced by alkylating agents and regulated by Ada protein. Three genes (ada, alkA, and alkB) encode DNA repair proteins that remove or repair alkylated bases. However, the role of AidB remains unclear despite extensive efforts to determine its function in cells exposed to alkylating agents. The E. coli AidB protein was identified as a component of the protein complex that assembles at strong promoters. We demonstrate that AidB protein preferentially binds to UP elements, AT rich transcription enhancer sequences found upstream of many highly expressed genes, several DNA repair genes, and housekeeping genes. AidB allows efficient transcription from promoters containing an UP element upon exposure to a DNA methylating agent and protects downstream genes from DNA damage. The DNA binding domain is required to target AidB to specific genes preferentially protecting them from alkylation damage. However, deletion of AidB’s DNA binding domain does not prevent its antimutagenic activity, instead this deletion appears to allow AidB to function as a cytoplasmic alkylation resistance protein. Our studies identify the role of AidB in alkylating agent exposed cells and suggest a new cellular strategy in which a subset of the genome is preferentially protected from damage by alkylating agents.
doi:10.1016/j.dnarep.2011.06.001
PMCID: PMC3162126  PMID: 21788159
AidB protein; alkylating agents; DNA protection; UP element
4.  Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function 
BMC Molecular Biology  2012;13:26.
Background
The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain.
Results
In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli.
Conclusion
The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12–16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.
doi:10.1186/1471-2199-13-26
PMCID: PMC3462732  PMID: 22873401
5.  Bleomycin Sensitivity in Escherichia coli is Medium-Dependent 
PLoS ONE  2012;7(3):e33256.
Bleomycin (BLM) is a glycopeptide antibiotic and anti-tumor agent that targets primarily the furanose rings of DNA and in the presence of ferrous ions produces oxidative damage and DNA strand breaks. Escherichia coli cells growing in broth medium and exposed to low concentrations of BLM contain double-strand breaks and require homologous recombination to survive. To a lesser extent, the cells also require the abasic (AP) endonucleases associated with base excision repair, presumably to repair oxidative damage. As expected, there is strong induction of the SOS system in treated cells. In contrast, E. coli cells growing in glucose or glycerol minimal medium are resistant to the lethal action of BLM and do not require either homologous recombination functions or AP-endonucleases for survival. DNA ligase activity, however, is needed for cells growing in minimal medium to resist the lethal effects of BLM. There is weak SOS induction in such treated cells.
doi:10.1371/journal.pone.0033256
PMCID: PMC3305319  PMID: 22438905
6.  C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins 
PLoS ONE  2012;7(2):e31863.
The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.
doi:10.1371/journal.pone.0031863
PMCID: PMC3279419  PMID: 22348133
7.  Inhibition of DNA Glycosylases via Small Molecule Purine Analogs 
PLoS ONE  2013;8(12):e81667.
Following the formation of oxidatively-induced DNA damage, several DNA glycosylases are required to initiate repair of the base lesions that are formed. Recently, NEIL1 and other DNA glycosylases, including OGG1 and NTH1 were identified as potential targets in combination chemotherapeutic strategies. The potential therapeutic benefit for the inhibition of DNA glycosylases was validated by demonstrating synthetic lethality with drugs that are commonly used to limit DNA replication through dNTP pool depletion via inhibition of thymidylate synthetase and dihydrofolate reductase. Additionally, NEIL1-associated synthetic lethality has been achieved in combination with Fanconi anemia, group G. As a prelude to the development of strategies to exploit the potential benefits of DNA glycosylase inhibition, it was necessary to develop a reliable high-throughput screening protocol for this class of enzymes. Using NEIL1 as the proof-of-principle glycosylase, a fluorescence-based assay was developed that utilizes incision of site-specifically modified oligodeoxynucleotides to detect enzymatic activity. This assay was miniaturized to a 1536-well format and used to screen small molecule libraries for inhibitors of the combined glycosylase/AP lyase activities. Among the top hits of these screens were several purine analogs, whose postulated presence in the active site of NEIL1 was consistent with the paradigm of NEIL1 recognition and excision of damaged purines. Although a subset of these small molecules could inhibit other DNA glycosylases that excise oxidatively-induced DNA adducts, they could not inhibit a pyrimidine dimer-specific glycosylase.
doi:10.1371/journal.pone.0081667
PMCID: PMC3857224  PMID: 24349107
8.  MutS Homologue hMSH5: Recombinational DSB Repair and Non-Synonymous Polymorphic Variants 
PLoS ONE  2013;8(9):e73284.
Double-strand breaks (DSBs) constitute the most deleterious form of DNA lesions that can lead to genome alterations and cell death, and the vast majority of DSBs arise pathologically in response to DNA damaging agents such as ionizing radiation (IR) and chemotherapeutic agents. Recent studies have implicated a role for the human MutS homologue hMSH5 in homologous recombination (HR)-mediated DSB repair and the DNA damage response. In the present study, we show that hMSH5 promotes HR-based DSB repair, and this property resides in the carboxyl-terminal portion of the protein. Our results demonstrate that DSB-triggered hMSH5 chromatin association peaks at the proximal regions of the DSB and decreases gradually with increased distance from the break. Furthermore, the DSB-triggered hMSH5 chromatin association is preceded by and relies on the assembly of hMRE11 and hRad51 at the proximal regions of the DSB. Lastly, the potential effects of hMSH5 non-synonymous variants (L85F, Y202C, V206F, R351G, L377F, and P786S) on HR and cell survival in response to DSB-inducing anticancer agents have been analyzed. These experiments show that the expression of hMSH5 variants elicits different survival responses to anticancer drugs cisplatin, bleomycin, doxorubicin and camptothecin. However, the effects of hMSH5 variants on survival responses to DSB-inducing agents are not directly correlated to their effects exerted on HR-mediated DSB repair, suggesting that the roles of hMSH5 variants in the processes of DNA damage response and repair are multifaceted.
doi:10.1371/journal.pone.0073284
PMCID: PMC3762724  PMID: 24023853
9.  The OXR domain defines a conserved family of eukaryotic oxidation resistance proteins 
BMC Cell Biology  2007;8:13.
Background
The NCOA7 gene product is an estrogen receptor associated protein that is highly similar to the human OXR1 gene product, which functions in oxidation resistance. OXR genes are conserved among all sequenced eukaryotes from yeast to humans. In this study we examine if NCOA7 has an oxidation resistance function similar to that demonstrated for OXR1. We also examine NCOA7 expression in response to oxidative stress and its subcellular localization in human cells, comparing these properties with those of OXR1.
Results
We find that NCOA7, like OXR1 can suppress the oxidative mutator phenotype when expressed in an E. coli strain that exhibits an oxidation specific mutator phenotype. Moreover, NCOA7's oxidation resistance function requires expression of only its carboxyl-terminal domain and is similar in this regard to OXR1. We find that, in human cells, NCOA7 is constitutively expressed and is not induced by oxidative stress and appears to localize to the nucleus following estradiol stimulation. These properties of NCOA7 are in striking contrast to those of OXR1, which is induced by oxidative stress, localizes to mitochondria, and appears to be excluded, or largely absent from nuclei.
Conclusion
NCOA7 most likely arose from duplication. Like its homologue, OXR1, it is capable of reducing the DNA damaging effects of reactive oxygen species when expressed in bacteria, indicating the protein has an activity that can contribute to oxidation resistance. Unlike OXR1, it appears to localize to nuclei and interacts with the estrogen receptor. This raises the possibility that NCOA7 encodes the nuclear counterpart of the mitochondrial OXR1 protein and in mammalian cells it may reduce the oxidative by-products of estrogen metabolite-mediated DNA damage.
doi:10.1186/1471-2121-8-13
PMCID: PMC1847813  PMID: 17391516
10.  Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay 
PLoS ONE  2013;8(8):e70391.
Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population.
doi:10.1371/journal.pone.0070391
PMCID: PMC3735594  PMID: 23936422
11.  Deregulation of DNA Damage Signal Transduction by Herpesvirus Latency-Associated M2 
Journal of Virology  2006;80(12):5862-5874.
Infected cells recognize viral replication as a DNA damage stress and elicit a DNA damage response that ultimately induces apoptosis as part of host immune surveillance. Here, we demonstrate a novel mechanism where the murine gamma herpesvirus 68 (γHV68) latency-associated, anti-interferon M2 protein inhibits DNA damage-induced apoptosis by interacting with the DDB1/COP9/cullin repair complex and the ATM DNA damage signal transducer. M2 expression constitutively induced DDB1 nuclear localization and ATM kinase activation in the absence of DNA damage. Activated ATM subsequently induced Chk activation and p53 phosphorylation and stabilization without eliciting H2AX phosphorylation and MRN recruitment to foci upon DNA damage. Consequently, M2 expression inhibited DNA repair, rendered cells resistant to DNA damage-induced apoptosis, and induced a G1 cell cycle arrest. Our results suggest that γHV68 M2 blocks apoptosis-mediated intracellular innate immunity, which might ultimately contribute to its role in latent infection.
doi:10.1128/JVI.02732-05
PMCID: PMC1472574  PMID: 16731925
12.  Identification and Quantification of DNA Repair Protein Apurinic/Apyrimidinic Endonuclease 1 (APE1) in Human Cells by Liquid Chromatography/Isotope-Dilution Tandem Mass Spectrometry 
PLoS ONE  2013;8(7):e69894.
Unless repaired, DNA damage can drive mutagenesis or cell death. DNA repair proteins may therefore be used as biomarkers in disease etiology or therapeutic response prediction. Thus, the accurate determination of DNA repair protein expression and genotype is of fundamental importance. Among DNA repair proteins involved in base excision repair, apurinic/apyrimidinic endonuclease 1 (APE1) is the major endonuclease in mammals and plays important roles in transcriptional regulation and modulating stress responses. Here, we present a novel approach involving LC-MS/MS with isotope-dilution to positively identify and accurately quantify APE1 in human cells and mouse tissue. A completely 15N-labeled full-length human APE1 was produced and used as an internal standard. Fourteen tryptic peptides of both human APE1 (hAPE1) and 15N-labeled hAPE1 were identified following trypsin digestion. These peptides matched the theoretical peptides expected from trypsin digestion and provided a statistically significant protein score that would unequivocally identify hAPE1. Using the developed methodology, APE1 was positively identified and quantified in nuclear and cytoplasmic extracts of multiple human cell lines and mouse liver using selected-reaction monitoring of typical mass transitions of the tryptic peptides. We also show that the methodology can be applied to the identification of hAPE1 variants found in the human population. The results describe a novel approach for the accurate measurement of wild-type and variant forms of hAPE1 in vivo, and ultimately for defining the role of this protein in disease development and treatment responses.
doi:10.1371/journal.pone.0069894
PMCID: PMC3726725  PMID: 23922845
13.  Msl2 Is a Novel Component of the Vertebrate DNA Damage Response 
PLoS ONE  2013;8(7):e68549.
hMSL2 (male-specific lethal 2, human) is a RING finger protein with ubiquitin ligase activity. Although it has been shown to target histone H2B at lysine 34 and p53 at lysine 351, suggesting roles in transcription regulation and apoptosis, its function in these and other processes remains poorly defined. To further characterize this protein, we have disrupted the Msl2 gene in chicken DT40 cells. Msl2−/− cells are viable, with minor growth defects. Biochemical analysis of the chromatin in these cells revealed aberrations in the levels of several histone modifications involved in DNA damage response pathways. DNA repair assays show that both Msl2−/− chicken cells and hMSL2-depleted human cells have defects in non-homologous end joining (NHEJ) repair. DNA damage assays also demonstrate that both Msl2 and hMSL2 proteins are modified and stabilized shortly after induction of DNA damage. Moreover, hMSL2 mediates modification, presumably ubiquitylation, of a key DNA repair mediator 53BP1 at lysine 1690. Similarly, hMSL1 and hMOF (males absent on the first) are modified in the presence of hMSL2 shortly after DNA damage. These data identify a novel role for Msl2/hMSL2 in the cellular response to DNA damage. The kinetics of its stabilization suggests a function early in the NHEJ repair pathway. Moreover, Msl2 plays a role in maintaining normal histone modification profiles, which may also contribute to the DNA damage response.
doi:10.1371/journal.pone.0068549
PMCID: PMC3706407  PMID: 23874665
14.  The Single-Strand DNA Binding Activity of Human PC4 Prevents Mutagenesis and Killing by Oxidative DNA Damage 
Molecular and Cellular Biology  2004;24(13):6084-6093.
Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide-induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub1Δ mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show that XPG recruits PC4 to a bubble-containing DNA substrate with a resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.
doi:10.1128/MCB.24.13.6084-6093.2004
PMCID: PMC480877  PMID: 15199162
15.  Stress Induction and Mitochondrial Localization of Oxr1 Proteins in Yeast and Humans 
Molecular and Cellular Biology  2004;24(8):3180-3187.
Reactive oxygen species (ROS) are critical molecules produced as a consequence of aerobic respiration. It is essential for cells to control the production and activity of such molecules in order to protect the genome and regulate cellular processes such as stress response and apoptosis. Mitochondria are the major source of ROS within the cell, and as a result, numerous proteins have evolved to prevent or repair oxidative damage in this organelle. The recently discovered OXR1 gene family represents a set of conserved eukaryotic genes. Previous studies of the yeast OXR1 gene indicate that it functions to protect cells from oxidative damage. In this report, we show that human and yeast OXR1 genes are induced by heat and oxidative stress and that their proteins localize to the mitochondria and function to protect against oxidative damage. We also demonstrate that mitochondrial localization is required for Oxr1 protein to prevent oxidative damage.
doi:10.1128/MCB.24.8.3180-3187.2004
PMCID: PMC381681  PMID: 15060142
16.  The Escherichia coli Methyl-Directed Mismatch Repair System Repairs Base Pairs Containing Oxidative Lesions 
Journal of Bacteriology  2003;185(5):1701-1704.
A major role of the methyl-directed mismatch repair (MMR) system of Escherichia coli is to repair postreplicative errors. In this report, we provide evidence that MMR also acts on oxidized DNA, preventing mutagenesis. When cells deficient in MMR are grown anaerobically, spontaneous mutation frequencies are reduced compared with those of the same cells grown aerobically. In addition, we show that a dam mutant has an increased sensitivity to hydrogen peroxide treatment that can be suppressed by mutations that inactivate MMR. In a dam mutant, MMR is not targeted to newly replicated DNA strands and therefore mismatches are converted to single- and double-strand DNA breaks. Thus, base pairs containing oxidized bases will be converted to strand breaks if they are repaired by MMR. This is demonstrated by the increased peroxide sensitivity of a dam mutant and the finding that the sensitivity can be suppressed by mutations inactivating MMR. We demonstrate further that this repair activity results from MMR recognition of base pairs containing 8-oxoguanine (8-oxoG) based on the finding that overexpression of the MutM oxidative repair protein, which repairs 8-oxoG, can suppress the mutH-dependent increase in transversion mutations. These findings demonstrate that MMR has the ability to prevent oxidative mutagenesis either by removing 8-oxoG directly or by removing adenine misincorporated opposite 8-oxoG or both.
doi:10.1128/JB.185.5.1701-1704.2003
PMCID: PMC148063  PMID: 12591888
18.  Highly Mutagenic Exocyclic DNA Adducts Are Substrates for the Human Nucleotide Incision Repair Pathway 
PLoS ONE  2012;7(12):e51776.
Background
Oxygen free radicals induce lipid peroxidation (LPO) that damages and breaks polyunsaturated fatty acids in cell membranes. LPO-derived aldehydes and hydroxyalkenals react with DNA leading to the formation of etheno(ε)-bases including 1,N6-ethenoadenine (εA) and 3,N4-ethenocytosine (εC). The εA and εC residues are highly mutagenic in mammalian cells and eliminated in the base excision repair (BER) pathway and/or by AlkB family proteins in the direct damage reversal process. BER initiated by DNA glycosylases is thought to be the major pathway for the removal of non-bulky endogenous base damage. Alternatively, in the nucleotide incision repair (NIR) pathway, the apurinic/apyrimidinic (AP) endonucleases can directly incise DNA duplex 5′ to a damaged base in a DNA glycosylase-independent manner.
Methodology/Principal Findings
Here we have characterized the substrate specificity of human major AP endonuclease 1, APE1, towards εA, εC, thymine glycol (Tg) and 7,8-dihydro-8-oxoguanine (8oxoG) residues when present in duplex DNA. APE1 cleaves oligonucleotide duplexes containing εA, εC and Tg, but not those containing 8oxoG. Activity depends strongly on sequence context. The apparent kinetic parameters of the reactions suggest that APE1 has a high affinity for DNA containing ε-bases but cleaves DNA duplexes at an extremely slow rate. Consistent with this observation, oligonucleotide duplexes containing an ε-base strongly inhibit AP site nicking activity of APE1 with IC50 values in the range of 5–10 nM. MALDI-TOF MS analysis of the reaction products demonstrated that APE1-catalyzed cleavage of εA•T and εC•G duplexes generates, as expected, DNA fragments containing 5′-terminal ε-base residue.
Conclusions/Significance
The fact that ε-bases and Tg in duplex DNA are recognized and cleaved by APE1 in vitro, suggests that NIR may act as a backup pathway to BER to remove a large variety of genotoxic base lesions in human cells.
doi:10.1371/journal.pone.0051776
PMCID: PMC3522590  PMID: 23251620
19.  Identification of DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs) as a Novel Target of Bisphenol A 
PLoS ONE  2012;7(12):e50481.
Bisphenol A (BPA) forms the backbone of plastics and epoxy resins used to produce packaging for various foods and beverages. BPA is also an estrogenic disruptor, interacting with human estrogen receptors (ER) and other related nuclear receptors. Nevertheless, the effects of BPA on human health remain unclear. The present study identified DNA-dependent protein kinase catalytic subunit (DNA-PKcs) as a novel BPA-binding protein. DNA-PKcs, in association with the Ku heterodimer (Ku70/80), is a critical enzyme involved in the repair of DNA double-strand breaks. Low levels of DNA-PK activity are previously reported to be associated with an increased risk of certain types of cancer. Although the Kd for the interaction between BPA and a drug-binding mutant of DNA-PKcs was comparatively low (137 nM), high doses of BPA were required before cellular effects were observed (100–300 μM). The results of an in vitro kinase assay showed that BPA inhibited DNA-PK kinase activity in a concentration-dependent manner. In M059K cells, BPA inhibited the phosphorylation of DNA-PKcs at Ser2056 and H2AX at Ser139 in response to ionizing radiation (IR)-irradiation. BPA also disrupted DNA-PKcs binding to Ku70/80 and increased the radiosensitivity of M059K cells, but not M059J cells (which are DNA-PKcs-deficient). Taken together, these results provide new evidence of the effects of BPA on DNA repair in mammalian cells, which are mediated via inhibition of DNA-PK activity. This study may warrant the consideration of the possible carcinogenic effects of high doses of BPA, which are mediated through its action on DNA-PK.
doi:10.1371/journal.pone.0050481
PMCID: PMC3515620  PMID: 23227178
20.  DNA Double Strand Breaks but Not Interstrand Crosslinks Prevent Progress through Meiosis in Fully Grown Mouse Oocytes 
PLoS ONE  2012;7(8):e43875.
There is some interest in how mammalian oocytes respond to different types of DNA damage because of the increasing expectation of fertility preservation in women undergoing chemotherapy. Double strand breaks (DSBs) induced by ionizing radiation and agents such as neocarzinostatin (NCS), and interstrand crosslinks (ICLs) induced by alkylating agents such as mitomycin C (MMC), are toxic DNA lesions that need to be repaired for cell survival. Here we examined the effects of NCS and MMC treatment on oocytes collected from antral follicles in mice, because potentially such oocytes are readily collected from ovaries and do not need to be in vitro grown to achieve meiotic competency. We found that oocytes were sensitive to NCS, such that this ionizing radiation mimetic blocked meiosis I and caused fragmented DNA. In contrast, MMC had no impact on the completion of either meiosis I or II, even at extremely high doses. However, oocytes treated with MMC did show γ-H2AX foci and following their in vitro maturation and parthenogenetic activation the development of the subsequent embryos was severely compromised. Addition of MMC to 1-cell embryos caused a similarly poor level of development, demonstrating oocytes have eventual sensitivity to this ICL-inducing agent but this does not occur during their meiotic division. In oocytes, the association of Fanconi Anemia protein, FANCD2, with sites of ICL lesions was not apparent until entry into the embryonic cell cycle. In conclusion, meiotic maturation of oocytes is sensitive to DSBs but not ICLs. The ability of oocytes to tolerate severe ICL damage and yet complete meiosis, means that this type of DNA lesion goes unrepaired in oocytes but impacts on subsequent embryo quality.
doi:10.1371/journal.pone.0043875
PMCID: PMC3425511  PMID: 22928046
21.  A Novel Manganese Efflux System, YebN, Is Required for Virulence by Xanthomonas oryzae pv. oryzae 
PLoS ONE  2011;6(7):e21983.
Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions.
doi:10.1371/journal.pone.0021983
PMCID: PMC3136493  PMID: 21789199

Results 1-21 (21)