PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Mouse Models of Polyglutamine Diseases: Review and Data Table. Part I 
Molecular Neurobiology  2012;46(2):393-429.
Polyglutamine (polyQ) disorders share many similarities, such as a common mutation type in unrelated human causative genes, neurological character, and certain aspects of pathogenesis, including morphological and physiological neuronal alterations. The similarities in pathogenesis have been confirmed by findings that some experimental in vivo therapy approaches are effective in multiple models of polyQ disorders. Additionally, mouse models of polyQ diseases are often highly similar between diseases with respect to behavior and the features of the disease. The common features shared by polyQ mouse models may facilitate the investigation of polyQ disorders and may help researchers explore the mechanisms of these diseases in a broader context. To provide this context and to promote the understanding of polyQ disorders, we have collected and analyzed research data about the characterization and treatment of mouse models of polyQ diseases and organized them into two complementary Excel data tables. The data table that is presented in this review (Part I) covers the behavioral, molecular, cellular, and anatomic characteristics of polyQ mice and contains the most current knowledge about polyQ mouse models. The structure of this data table is designed in such a way that it can be filtered to allow for the immediate retrieval of the data corresponding to a single mouse model or to compare the shared and unique aspects of many polyQ models. The second data table, which is presented in another publication (Part II), covers therapeutic research in mouse models by summarizing all of the therapeutic strategies employed in the treatment of polyQ disorders, phenotypes that are used to examine the effects of the therapy, and therapeutic outcomes.
Electronic supplementary material
The online version of this article (doi:10.1007/s12035-012-8315-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s12035-012-8315-4
PMCID: PMC3461215  PMID: 22956270
Polyglutamine; Mouse models; Huntington’s disease; Spinocerebellar ataxia; DRPLA; SBMA
2.  Mouse Models of Polyglutamine Diseases in Therapeutic Approaches: Review and Data Table. Part II 
Molecular Neurobiology  2012;46(2):430-466.
Mouse models of human diseases are created both to understand the pathogenesis of the disorders and to find successful therapies for them. This work is the second part in a series of reviews of mouse models of polyglutamine (polyQ) hereditary disorders and focuses on in vivo experimental therapeutic approaches. Like part I of the polyQ mouse model review, this work is supplemented with a table that contains data from experimental studies of therapeutic approaches in polyQ mouse models. The aim of this review was to characterize the benefits and outcomes of various therapeutic strategies in mouse models. We examine whether the therapeutic strategies are specific to a single disease or are applicable to more than one polyQ disorder in mouse models. In addition, we discuss the suitability of mouse models in therapeutic approaches. Although the majority of therapeutic studies were performed in mouse models of Huntington disease, similar strategies were also used in other disease models.
Electronic supplementary material
The online version of this article (doi:10.1007/s12035-012-8316-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s12035-012-8316-3
PMCID: PMC3461214  PMID: 22944909
Polyglutamine; Mouse models; Therapy; Huntington disease; Spinocerebellar ataxia; DRPLA; SBMA
3.  An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases 
Background
RNA interference (RNAi) and antisense strategies provide experimental therapeutic agents for numerous diseases, including polyglutamine (polyQ) disorders caused by CAG repeat expansion. We compared the potential of different oligonucleotide-based strategies for silencing the genes responsible for several polyQ diseases, including Huntington's disease and two spinocerebellar ataxias, type 1 and type 3. The strategies included nonallele-selective gene silencing, gene replacement, allele-selective SNP targeting and CAG repeat targeting.
Results
Using the patient-derived cell culture models of polyQ diseases, we tested various siRNAs, and antisense reagents and assessed their silencing efficiency and allele selectivity. We showed considerable allele discrimination by several SNP targeting siRNAs based on a weak G-G or G-U pairing with normal allele and strong G-C pairing with mutant allele at the site of RISC-induced cleavage. Among the CAG repeat targeting reagents the strongest allele discrimination is achieved by miRNA-like functioning reagents that bind to their targets and inhibit their translation without substantial target cleavage. Also, morpholino analog performs well in mutant and normal allele discrimination but its efficient delivery to cells at low effective concentration still remains a challenge.
Conclusions
Using three cellular models of polyQ diseases and the same experimental setup we directly compared the performance of different oligonucleotide-based treatment strategies that are currently under development. Based on the results obtained by us and others we discussed the advantages and drawbacks of these strategies considering them from several different perspectives. The strategy aimed at nonallele-selective inhibiting of causative gene expression by targeting specific sequence of the implicated gene is the easiest to implement but relevant benefits are still uncertain. The gene replacement strategy that combines the nonallele-selective gene silencing with the expression of the exogenous normal allele is a logical extension of the former and it deserves to be explored further. Both allele-selective RNAi approaches challenge cellular RNA interference machinery to show its ability to discriminate between similar sequences differing in either single base substitutions or repeated sequence length. Although both approaches perform well in allele discrimination most of our efforts are focused on repeat targeting due to its potentially higher universality.
doi:10.1186/1471-2199-13-6
PMCID: PMC3359213  PMID: 22397573
Triplet repeats; Polyglutamine diseases; siRNA; Antisense oligonucleotides; SNP targeting; CAG repeat targeting
4.  Mouse Ataxin-3 Functional Knock-Out Model 
Neuromolecular Medicine  2010;13(1):54-65.
Spinocerebellar ataxia 3 (SCA3) is a genetic disorder resulting from the expansion of the CAG repeats in the ATXN3 gene. The pathogenesis of SCA3 is based on the toxic function of the mutant ataxin-3 protein, but the exact mechanism of the disease remains elusive. Various types of transgenic mouse models explore different aspects of SCA3 pathogenesis, but a knock-in humanized mouse has not yet been created. The initial aim of this study was to generate an ataxin-3 humanized mouse model using a knock-in strategy. The human cDNA for ataxin-3 containing 69 CAG repeats was cloned from SCA3 patient and introduced into the mouse ataxin-3 locus at exon 2, deleting it along with exon 3 and intron 2. Although the human transgene was inserted correctly, the resulting mice acquired the knock-out properties and did not express ataxin-3 protein in any analyzed tissues, as confirmed by western blot and immunohistochemistry. Analyses of RNA expression revealed that the entire locus consisting of human and mouse exons was expressed and alternatively spliced. We detected mRNA isoforms composed of exon 1 spliced with mouse exon 4 or with human exon 7. After applying 37 PCR cycles, we also detected a very low level of the correct exon 1/exon 2 isoform. Additionally, we confirmed by bioinformatic analysis that the structure and power of the splicing site between mouse intron 1 and human exon 2 (the targeted locus) was not changed compared with the native mouse locus. We hypothesized that these splicing aberrations result from the deletion of further splicing sites and the presence of a strong splicing site in exon 4, which was confirmed by bioinformatic analysis. In summary, we created a functional ataxin-3 knock-out mouse model that is viable and fertile and does not present a reduced life span. Our work provides new insights into the splicing characteristics of the Atxn3 gene and provides useful information for future attempts to create knock-in SCA3 models.
Electronic supplementary material
The online version of this article (doi:10.1007/s12017-010-8137-3) contains supplementary material, which is available to authorized users.
doi:10.1007/s12017-010-8137-3
PMCID: PMC3044828  PMID: 20945165
Ataxin-3; Mouse model; Knock-in; Knock-out; CAG repeats; Splicing

Results 1-4 (4)