Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
author:("kucha, Anna")
1.  abFASP-MS: Affinity-Based Filter-Aided Sample Preparation Mass Spectrometry for Quantitative Analysis of Chemically Labeled Protein Complexes 
Journal of Proteome Research  2014;13(2):1147-1155.
Affinity purification coupled to 1-D gel-free liquid chromatography mass spectrometry (LC–MS) is a well-established and widespread approach for the analyses of noncovalently interacting protein complexes. In this study, two proteins conjugated to a streptavidin-binding peptide and hemagglutinin double tag were expressed in the respective Flp-In HEK293 cell lines: green fluorescent protein (SH-GFP) and TANK binding kinase 1 (SH-TBK1_MOUSE). Fluorescent anti-HA immunoblots revealed that the expression level of SH-GFP was ∼50% lower than that of SH-TBK1_MOUSE. Subsequently, the input material was normalized to obtain a similar quantity of purified SH-tagged proteins. Optimization of the release of protein complexes from the anti-HA-agarose with different eluting agents was then assessed. With respect to the total number of protein groups identified in the purified complexes, elution with 2% SDS surpassed both 100 mM glycine and 100 mM formic acid. Relative quantitation of the purified protein complexes using TMT 6-plex reagents confirmed the higher efficiency of the 2% SDS elution followed by filter-aided sample preparation (FASP). The data presented in this study provide a new application of FASP to quantitative MS analysis of affinity-purified protein complexes. We have termed the approach abFASP-MS, or affinity-based filter-aided sample preparation mass spectrometry.
PMCID: PMC3923452  PMID: 24400740
affinity purification; orbitrap velos; SDS elution; normalization; bait expression; FASP; quantitation; TMT 6-plex
2.  EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors 
Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described.
Our results demonstrate the induction of the gene coding TTP (ZFP36) by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp) and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp.
EGF activates TTP expression via ELK-1 and EGR-1 transcription factors.
PMCID: PMC3342124  PMID: 22433566

Results 1-2 (2)